Upload presentasi
Presentasi sedang didownload. Silahkan tunggu
Diterbitkan olehYohanes Tanudjaja Telah diubah "6 tahun yang lalu
1
StopList dan Stemming yasmi afrizal yasmi_afrizal@yahoo.co.id
Pertemuan ke-3 StopList dan Stemming yasmi afrizal Jurusan Teknik Informatika Universitas Ahmad Dahlan Semester Ganjil 2010/2011
2
Pertemuan ke-3 Hukum Zipf Jika kata-kata di dalam suatu koleksi diranking, r, berdasarkan frekuensinya, f, maka memenuhi relasi: r × (f/n) = c dimana n adalah jumlah kemunculan kata di dalam koleksi, 19 juta dalam contoh. Koleksi berbeda mempunyai konstanta c berbeda. Dalam teks bahasa Inggris, c sekitar 0.1. Jurusan Teknik Informatika Universitas Ahmad Dahlan Semester Ganjil 2010/2011
3
Metode Hukum Zipf Pertemuan ke-3
Stop lists: Abaikan kata-kata yang sangat sering (upper cut-off). Digunakan oleh hampir semua sistem. Significant words: Abaikan kata yang paling sering dan paling sedikit (upper and lower cut- off). Jarang digunakan. Term weighting: Berikan bobot berbeda untuk term-term berdasarkan pada frekuensinya, kata- kata yang paling sering dibobot kurang. Digunakan oleh hampir semua metode perankingan. Jurusan Teknik Informatika Universitas Ahmad Dahlan Semester Ganjil 2010/2011
4
Pandangan Logik Dokumen
Pertemuan ke-3 Pandangan Logik Dokumen • Representasi dokumen dipandang sebagai suatu continuum (rangkaian kesatuan). Jurusan Teknik Informatika Universitas Ahmad Dahlan Semester Ganjil 2010/2011
5
Arsitektur Sistem IR Pertemuan ke-3
Jurusan Teknik Informatika Universitas Ahmad Dahlan Semester Ganjil 2010/2011
6
Arsitektur IR: Contoh Pertemuan ke-3
Jurusan Teknik Informatika Universitas Ahmad Dahlan Semester Ganjil 2010/2011
7
Komponen Sistem IR Pertemuan ke-3
• Operasi Teks membentuk kata-kata indeks (token) – Tokenization (pemisahan kata) – Penghapusan Stopword (seperti ‘the’, ‘of’, …) – Stemming (mengubah kata-kata berbeda ke bentuk akarnya) Indexing membangun suatu inverted index dari kata ke penunjuk dokumen. – Pemetaan dari kata kunci ke Id dokumen. Jurusan Teknik Informatika Universitas Ahmad Dahlan Semester Ganjil 2010/2011
8
...Komponen Sistem IR Pertemuan ke-3
Searching meretrieve dokumen-dokumen yang mengandung token query yang diberikan dari inverted index. Ranking memberikan score kepada semua dokumen yang diretrieve sesuai dengan relevance metric. User Interface menangani interaksi dengan pengguna: – Input query dan output dokumen. – Feedback relevansi – Visualisasi hasil. Jurusan Teknik Informatika Universitas Ahmad Dahlan Semester Ganjil 2010/2011
9
...Komponen Sistem IR Pertemuan ke-3
Operasi Query mentransformasi query untuk meningkatkan retrieval: – Query expansion menggunakan thesaurus. – Query transformation menggunakan feedback relevansi. – Optimisasi query untuk meningkatkan kinerja. (kurang penting daripada dalam sistem data retrieval) Pertanyaan: bagaimana menambahkan suatu komponen personalisasi ke sistem IR? Jurusan Teknik Informatika Universitas Ahmad Dahlan Semester Ganjil 2010/2011
10
Pencarian Web Pertemuan ke-3 Aplikasi IR terhadap dokumen pada WWW
Perbedaan: – Ukuran – lebih dari 25 milyar dokumen diindeks pada Google, terus bertambah – Perubahan dokumen tidak dapat dikendalikan. – Harus menghimpun corpus dokumen dengan menjaring (spidering) web. – Dapat mengeksploitasi informasi layout struktural dalam HTML (XML). – Dapat mengeksploitasi struktur link dari web Jurusan Teknik Informatika Universitas Ahmad Dahlan Semester Ganjil 2010/2011
11
Sistem Pencarian Web Pertemuan ke-3
Jurusan Teknik Informatika Universitas Ahmad Dahlan Semester Ganjil 2010/2011
12
Area Terkait • Manajemen Basis Data • Ilmu Perpustakaan dan Informasi
Pertemuan ke-3 Area Terkait • Manajemen Basis Data • Ilmu Perpustakaan dan Informasi • Kecerdasan Buatan • Pemrosesan bahasa alamai • Pembelajaran Mesin Jurusan Teknik Informatika Universitas Ahmad Dahlan Semester Ganjil 2010/2011
13
Relevansi Pertemuan ke-2
Relevansi merupakan suatu judgment (keputusan) subyektif dan dapat didasarkan pada: – topik yang tepat. – waktu (informasi terbaru). – otoritatif (dari suatu sumber terpercaya). – kebutuhan informasi dari pengguna. Kriteria relevansi utama: suatu sistem IR sebaiknya (harus) memenuhi kebutuhan informasi pengguna. Jurusan Teknik Informatika Universitas Ahmad Dahlan Semester Ganjil 2010/2011
14
Pertemuan ke-2 Pencarian Keyword Ide paling sederhana dari relevansi: apakah string query ada di dalam dokumen (kata demi kata, verbatim)? Ide yang lebih fleksibel: Berapa sering kata-kata di dalam query muncul di dalam dokumen, tanpa melihat urutannya (bag of words)? Jurusan Teknik Informatika Universitas Ahmad Dahlan Semester Ganjil 2010/2011
15
Masalah dengan Keyword
Pertemuan ke-2 Masalah dengan Keyword Mungkin tidak meretrieve dokumen relevan yang menyertakan synonymous terms. – “restaurant” vs. “café” – “NDHU” vs. “National Dong Hwa University” Mungkin meretrieve dokumen tak-relevan yang menyertakan ambiguous terms. – “bat” (baseball vs. mamalia) – “Apple” (perusahaan vs. buah-buahan) – “bit” (unit data vs. perilaku menggigit) Jurusan Teknik Informatika Universitas Ahmad Dahlan Semester Ganjil 2010/2011
16
Bukan Sekedar Keyword Pertemuan ke-2
Kita akan mendiskusikan dasar-dasar IR berbasis keyword, tetapi… – Fokus pada perluasan dan pengembangan terakhir untuk mendapatkan hasil terbaik. Kita akan membahas dasar-dasar pembangunan sistem IR yang efisien, tetapi… – Fokus pada algoritma dan kemampuan dasar, bukan masalah sistem yang memungkinkan pengembangan ke database ukuran industri. Jurusan Teknik Informatika Universitas Ahmad Dahlan Semester Ganjil 2010/2011
17
IR Cerdas Pertemuan ke-2
Memanfaatkan pengertian atau makna dari kata yang digunakan. Melibatkan urutan kata di dalam query. Beradaptasi dengan pengguna berdasarkan pada feedback, langsung atau tidak langsung. Memperluas pencarian dengan term terkait. Mengerjakan pemeriksaan ejaaan/perbaikan tanda pengenal otomatis. Memanfaatkan Otoritas dari sumber informasi. Jurusan Teknik Informatika Universitas Ahmad Dahlan Semester Ganjil 2010/2011
18
Pertemuan ke-2 Indeks Sistem IR jarang mencari koleksi dokumen secara langsung. Berdasarkan pada koleksi dokumen, dibangun sebuah index. Pengguna mencari index tersebut. Jurusan Teknik Informatika Universitas Ahmad Dahlan Semester Ganjil 2010/2011
19
Indexing Otomatis Pertemuan ke-2
Tujuan dari automatic indexing adalah membangun index dan meretrieve informasi tanpa intervensi manusia. Ketika informasi yang dicari adalah teks, metode automatic indexing akan sangat efektif. Penelitian automatic indexing fundamental dimulai oleh Gerald Salton, Professor of Computer Science di Cornell & mahasiswa Pasca-Sarjananya (Sistem SMART). Jurusan Teknik Informatika Universitas Ahmad Dahlan Semester Ganjil 2010/2011
20
IR dari Koleksi Besar Pertemuan ke-2
Information retrieval dari koleksi sangat besar bersandar pada: – Jumlah computer power yang besar untuk mengerjakan algoritma sederhana terhadap jumlah data yang sangat banyak. komputasi kinerja-tinggi – Pemahaman pengguna terhadap informasi dan kemampuan dari sistem. Interaksi manusia - komputer Machine-learning banyak digunakan untuk mendapatkan kinerja terbaik. Jurusan Teknik Informatika Universitas Ahmad Dahlan Semester Ganjil 2010/2011
21
Searching & Browsing Pertemuan ke-2 • Orang dalam perulangan
Jurusan Teknik Informatika Universitas Ahmad Dahlan Semester Ganjil 2010/2011
22
IR dari Koleksi Dokumen Teks
Pertemuan ke-2 IR dari Koleksi Dokumen Teks Kategori utama dari metode: – Ranking kemiripan terhadap query (vector space model). – Pencocokan exact (Boolean). – Ranking berdasarkan tingkat kepentingan dokumen (PageRank) – Kombinasi beberapa metode Contoh: Web search engine, seperti Google & Yahoo, menggunakan metode kombinasi, berdasarkan pada pendekatan pertama dan ketiga, dengan kombinasi exact dipilih menggunakan machine learning Jurusan Teknik Informatika Universitas Ahmad Dahlan Semester Ganjil 2010/2011
23
Istilah Penting Pertemuan ke-2
Information retrieval: sub-bidang ilmu komputer yang berurusan dengan penemuan kembali dokumen (khususnya teks) terotomatis berdasarkan pada content dan contextnya. Searching: Pencarian informasi spesifik di dalam badan informasi. Hasilnya adalah sehimpunan hit. Browsing: Eksplorasi tak-terstruktur dari badan informasi. Linking: Berpindah dari satu item ke item lain mengikuti link (sambungan) seperti rujukan (referensi). Jurusan Teknik Informatika Universitas Ahmad Dahlan Semester Ganjil 2010/2011
24
Pertemuan ke-2 ...Istilah Query: Suatu string teks, menggambarkan informasi yang sedang dicari pengguna. Setiap kata dari query dinamakan search term. Query dapat berupa search term tunggal, string dari term, frase atau ekspresi tertentu menggunakan simbol khusus, misalnya regular expression. Pencarian Full text: Metode yang membandingkan query dengan setiap kata di dalam teks, tanpa membedakan fungsi dari berbagai kata. Pencarian Bidang : Metode pencarian pada bidang struktural atau bibliografis spesifik, seperti penulis atau judul. Jurusan Teknik Informatika Universitas Ahmad Dahlan Semester Ganjil 2010/2011
25
Pertemuan ke-2 ...Istilah Corpus: Koleksi dokumen yang diindeks dan dijadikan target pencarian. Daftar kata: Himpunan semua term yang digunakan dalam indeks untuk suatu corpus (dikenal sebagai vocabulary file). Pada pencarian full text, word list adalah semua term di dalam corpus, stop words dihapus. Term- term terkait dikombinasi dengan stemming. Controlled vocabulary: Metode indexing dimana word list bersifat tetap. Term-term dari vocabulary tersebut dipilih untuk mendeskripsikan setiap dokumen. Keyword: Nama untuk term-term dalam word list, terutama dengan controlled vocabulary Jurusan Teknik Informatika Universitas Ahmad Dahlan Semester Ganjil 2010/2011
26
Mengurutan & Ranking Hit
Pertemuan ke-2 Mengurutan & Ranking Hit Ketika pengguna men-submit suatu query ke sistem IR, sistem mengembalikan sehimpunan hit. Pada koleksi dokumen besar, himpunan hit akan sangat besar. Nilai untuk pengguna sering tergantung pada urutan hit ditampilkan. Tiga metode utama: – Mengurutkan hit, misal berdasarkan tanggal – Meranking hit berdasarkan kemiripan antara query dan dokumen – Meranking hit berdasarkan kepentingan dari dokumen Jurusan Teknik Informatika Universitas Ahmad Dahlan Semester Ganjil 2010/2011
27
IR Berbasis Teks Pertemuan ke-2
Sebagian besar metode ranking didasarkan pada model ruang vektor (vector space model). Sebagian besar metode pencocokan (matching) didasarkan ada operator Boolean. Metode Web search mengkombinasikan model ruang vektor dengan ranking berdasarkan pada tingkat kepentingan dokumen. Banyak sistem (dalam praktek) menggabungkan fitur- fitur dari beberapa pendekatan. Pada bentuk dasar, semua pendekatan menganggap kata sebagai token terpisah, dengan usaha minimal untuk memahami kata-kata secara linguistik. Jurusan Teknik Informatika Universitas Ahmad Dahlan Semester Ganjil 2010/2011
28
Frekuensi Kata Pertemuan ke-2
Observasi: Beberapa kata lebih umum daripada yang lain. Statistika: Koleksi sangat besar dari dokumen teks tak-terstruktur mempunyai karakteristik statistik serupa. Statistik ini: – Mempengaruhi efektifitas dan efisiensi dari struktur data yang digunakan untuk mengindeks dokumen – Banyak model retrieval memanfaatkannya Jurusan Teknik Informatika Universitas Ahmad Dahlan Semester Ganjil 2010/2011
29
...Frekuensi Kata Pertemuan ke-2
Contoh: Contoh berikut ini diambil dari : – Jamie Callan, Characteristics of Text, 1997 – 19 Juta kata sampel – Slide berikut memperlihatkan 50 kata yang paling umum, diranking (r) berdasarkan frekuensinya (f). Jurusan Teknik Informatika Universitas Ahmad Dahlan Semester Ganjil 2010/2011
30
Pertemuan ke-2 ...Frekuensi Kata
31
Distribusi Ranking Frekuensi
Pertemuan ke-2 Distribusi Ranking Frekuensi Untuk semua kata di dalam suatu dokumen, untuk setiap kata w – f adalah frekuensi munculnya w – r ranking dari w disusun menurut frekuensi. (kata yang paling umum muncul mempunyai rank =1)
32
Pertemuan ke-2 Contoh Frekuensi Rank Slide berikut memperlihatkan kata-kata di dalam data Callan yang telah dinormalisasi. Dalam contoh ini: – r adalah ranking dari kata w dalam sampel. – f adalah frekuensi kata w di dalam sampel. – n adalah jumlah total kemunculan kata di dalam sampel.
33
...Contoh Ranking Frekuensi
Pertemuan ke-2 ...Contoh Ranking Frekuensi
Presentasi serupa
© 2024 SlidePlayer.info Inc.
All rights reserved.