Upload presentasi
Presentasi sedang didownload. Silahkan tunggu
1
TOPIK 3 BENTUK-BENTUK NORMAL
2
MATERI 7 BENTUK-BENTUK NORMAL DNF/SOP/MINTERM CNF/POS/MAXTERM
BENTUK KANONIK FUNGSI BOOLE KONVERSI ANTAR BENTUK NORMAL
3
MENGAPA BENTUK NORMAL? (1)
Kemungkinan nilai dalam tabel kebenaran: Semua salah (kontradiksi) Semua benar (tautologi) Memuat paling sedikit 1 benar (satisfiable) Cara mencari nilai kebenaran, biasanya menggunakan tabel kebenaran.
4
MENGAPA BENTUK NORMAL? (2)
Pembuatan tabel kebenaran tidak terlalu praktis, bahkan dengan bantuan komputer, terutama untuk jumlah variabel yang besar. Prosedur yang lebih mudah adalah dengan mereduksi ke bentuk-bentuk normal.
5
JENIS BENTUK NORMAL Disjunctive normal form (DNF)
atau Sum of products (SOP) atau Minterm Conjunctive normal form (CNF) atau Product of sums (POS) atau Maxterm
6
DNF/SOP DNF terdiri dari penjumlahan dari beberapa perkalian (sum of products = SOP). Dalam tabel kebenaran, DNF merupakan perkalian-perkalian yang menghasilkan nilai 1. Contoh: xy + x’y Setiap suku (term) disebut minterm Simbol minterm : m
7
CNF/POS CNF terdiri dari perkalian dari beberapa penjumlahan (product of sum = POS). Dalam tabel kebenaran, CNF merupakan penjumlahan-penjumlahan yang menghasilkan nilai 0. Contoh: (x+y) . (x’+y) Setiap suku (term) disebut maxterm Simbol maxterm : M
8
MINTERM & MAXTERM Cara yang dipakai untuk mempermudah menyatakan suatu ekspresi logika Pada dasarnya adalah mendaftar nomor baris atau nilai desimal dari kombinasi variabel input yang outputnya : berharga "1" untuk minterm berharga "0" untuk maxterm.
9
Tabel Minterm dan Maxterm (1)
10
Tabel Minterm dan Maxterm (2)
11
Membentuk Persamaan Boole dari Tabel kebenaran (1)
Jika yang dilihat adalah output "1" maka persamaan mempunyai bentuk "Sum of Product (SOP)“/DNF/ Minterm Jika diberi input berikut : X Y Z = ditulis : X’Y’Z’ X Y Z = ditulis : XYZ X Y Z = ditulis : X’YZ
12
Membentuk Persamaan Boole dari Tabel kebenaran (2)
Jika yang dilihat adalah output “0" maka persamaan mempunyai bentuk " Product of Sum (POS)“/CNF/ Maxterm Jika diberi input berikut : X Y Z = ditulis : (X+Y+Z) X Y Z = ditulis : (X’+Y’+Z’) X Y Z = ditulis : (X+Y’+Z’)
13
Contoh 1 Nyatakan dalam bentuk SOP dan POS
14
Penyelesaian Contoh 1 (1)
SOP/DNF/MINTERM Kombinasi nilai-nilai peubah yang menghasilkan nilai fungsi sama dengan 1 adalah 01, maka fungsi Booleannya dalam bentuk SOP: f(x, y) = x’y 1 atau f(x, y) = m1 = m (1)
15
Penyelesaian Contoh 1 (2)
POS/CNF/MAXTERM Kombinasi nilai-nilai peubah yang menghasilkan nilai fungsi sama dengan 0 adalah 00, 10, 11, maka fungsi Booleannya dalam bentuk POS: f(x,y)=(x+y)(x’+y)(x’+y’) atau f(x, y) = M0 M2 M3 = M(0, 2, 3) 1 1 1
16
Contoh 2 Nyatakan dalam bentuk SOP dan POS
17
Penyelesaian Contoh 2 (1)
SOP Kombinasi nilai-nilai peubah yang menghasilkan nilai fungsi sama dengan 1 adalah 001, 100, dan 111, maka fungsi Booleannya dalam bentuk SOP: f(x, y, z) = x’y’z + xy’z’ + xyz atau f(x, y, z) = m1 + m4 + m7 = m (1, 4, 7) 001 100 111
18
Penyelesaian Contoh 2 (2)
POS Kombinasi nilai-nilai peubah yang menghasilkan nilai fungsi sama dengan 0 adalah 000, 010, 011, 101, dan 110, maka fungsi Booleannya dalam bentuk POS: f(x,y,z)= (x+y+z)(x+y’+z)(x+y’+z’) (x’+y+z’)(x’+y’+z) atau f(x, y, z) = M0 M2 M3 M5 M6 = M(0, 2, 3, 5, 6)
19
BENTUK KANONIK FUNGSI BOOLEAN (1)
Bentuk kanonik/bentuk lengkap adalah bentuk fungsi boolean dimana setiap term mengandung/memuat semua variabel yang ada melengkapi literal untuk setiap suku agar jumlahnya sama Jumlah literal sama dengan jumlah variabel
20
BENTUK KANONIK FUNGSI BOOLEAN (2)
Contoh bentuk kanonik: f(x,y) = xy’ + xy Minterm f(x,y,z) = xyz’ + x’y’z +xyz Minterm f(x,y) = (x+y) . (x’+y) Maxterm Contoh bentuk non-kanonik : f(x,y,z) = x + y’z Minterm f(x,y,z) = (x+y+z’) . (x+z) . (y’ + z) Maxterm
21
Contoh 3 Nyatakan fungsi Boolean f(x,y,z) = x + y’z dalam bentuk kanonik SOP dan POS.
22
Penyelesaian Contoh 3 (1)
SOP/DNF/Minterm x = x (y + y’) = xy + xy’ = xy (z + z’) + xy’(z + z’) = xyz + xyz’ + xy’z + xy’z’ y’z = y’z (x + x’) = xy’z + x’y’z Jadi f(x, y, z) = x + y’z = xyz + xyz’ + xy’z + xy’z’ + xy’z + x’y’z = x’y’z + xy’z’ + xy’z + xyz’ + xyz atau f(x, y, z) = m1 + m4 + m5 + m6 + m7 = m(1,4,5,6,7)
23
Penyelesaian Contoh 3 (2)
POS/CNF/Maxterm f(x, y, z) = x + y’z = (x + y’)(x + z) x + y’ = x + y’ + zz’ = (x + y’ + z)(x + y’ + z’) x + z = x + z + yy’ = (x + y + z)(x + y’ + z) Jadi, f(x, y, z) = (x+y’+z)(x+y’+z’)(x+y+z)(x+y’+ z) = (x + y + z)(x + y’ + z)(x + y’ + z’) atau f(x, y, z) = M0M2M3 = M(0, 2, 3)
24
Konversi Antar Bentuk Normal (1)
Konversi SOP menjadi POS Komplemen Minterm Maxterm Konversi POS menjadi SOP Komplemen Maxterm Minterm
25
Konversi Antar Bentuk Normal (2)
Misalkan f(x, y, z) = m (1, 4, 5, 6, 7) dan f’ adalah fungsi komplemen dari f, maka f’(x, y, z) = m (0, 2, 3) = m0+ m2 + m3 Dengan menggunakan hukum De Morgan, diperoleh fungsi f dalam bentuk POS.
26
Konversi Antar Bentuk Normal (3)
f(x, y, z) = (f’(x, y, z))’= (m0+m2+m3)’ = m0’ . m2’ . m3’ = (x’y’z’)’ (x’y z’)’ (x’y z)’ = (x + y + z) (x +y’+z) (x+ y’+ z’) = M0 M2 M3 = M (0,2,3) Jadi, f(x, y, z) = m (1, 4, 5, 6, 7) = M (0,2,3). Kesimpulan: mj’ = Mj
27
Contoh 4 Nyatakan f(x, y, z)=M(0,2,4,5) dalam SOP Penyelesaian :
g(w, x, y, z)=m(1,2,5,6,10,15) dalam POS Penyelesaian: g(w, x, y, z) = M (0,3,4,7,8,9,11,12,13,14)
28
PENYEDERHANAAN FUNGSI BOOLEAN
MATERI 8 PENYEDERHANAAN FUNGSI BOOLEAN
29
Penyederhanaan Fungsi Boolean
Secara aljabar Menggunakan Peta Karnaugh
30
Penyederhanaan Secara Aljabar
Menggunakan sifat-sifat/ hukum-hukum aljabar boolean, seperti di logika matematika.
31
HUKUM-HUKUM ALJABAR BOOLEAN
32
Contoh (1) Sederhanakan a + a’b ! Penyelesaian:
a + a’b = (a + ab) + a’b (Penyerapan) = a + (ab + a’b) (Asosiatif) = a + (a + a’) b (Distributif) = a + 1 b (Komplemen) = a + b (Identitas)
33
Contoh (2) Sederhanakan ((x+y’)’ + (x+z))’ + y ! Penyelesaian:
= (xx’z’ + x’y’z’) + y = 0 + x’y’z’ + y = x’y’z’ + y = (x’+y) (y’+y) (z’+y) = (x’+y) (z’+y) = x’z’ + y
34
Peta Karnaugh (1) Selain dengan teorema boole, salah satu cara untuk memanipulasi dan menyederhanakan fungsi boole adalah dengan teknik peta karnaugh. Peta karnaugh merupakan sekumpulan kotak-kotak yang diberi nama sedemikian rupa berdasarkan nama variabelnya dan Diletakkan sedemikian rupa pula sehingga dapat mengeliminasi beberapa tabel jika kotak itu digabung.
35
Peta Karnaugh (2) Jumlah kotak tergantung banyaknya variabel input. Jika ada sebanyak n input maka ada 2n kombinasi input, maka sebanyak itu pula kotak yang dibutuhkan. Dalam peta karnaugh dikenal istilah tetangga dekat. Yang dimaksud dengan tetangga dekat adalah kotak-kotak yang memiliki satu atau lebih variabel yang sama atau kotak-kotak yang terletak dalam satu atau lebih bidang yang sama. Yang dimaksud dengan bidang adalah sekumpulan kotak yang sudah diberi nama berdasarkan variabel inputnya
36
Peta Karnaugh (3) Peta Karnaugh dengan dua peubah/ variabel
Peta Karnaugh dengan tiga peubah/ variabel Peta Karnaugh dengan empat peubah/ variabel
37
Peta Karnaugh dengan dua variabel (1)
Untuk 2 variabel input akan ada sebanyak 22 = 4 kombinasi input Maka banyaknya kotak yang dibutuhkan adalah 4 kotak. Keempat kotak tersebut diatur sebagai berikut: A’ A B’ A’B’ AB’ B A’B AB
38
Peta Karnaugh dengan dua variabel (2)
Penggabungan kotak-kotak untuk 2 variabel (A, B) Jika ada 2 kotak yang ditandai 1 bertetangga dekat dapat digabung, akan menyatakan 1 variabel tunggal. Untuk 1 kotak yang ditandai 1 dan tidak memiliki tetangga dekat, akan menyatakan 2 variabel.
39
Peta Karnaugh dengan dua variabel (4)
Contoh 1: Y = A’B + AB’ A’ A Tidak bisa digabung, tidak bisa disederhanakan B’ 1 B 1
40
Peta Karnaugh dengan dua variabel (6)
Contoh 2: Y = A’B + AB A’ A Bisa digabung, dan disederhanakan menjadi Y = B B’ B 1 1 B
41
Peta Karnaugh dengan dua variabel (7)
Contoh 3: Y = A’B’ + AB’ + AB B’ A’ A Bisa digabung, dan disederhanakan menjadi Y = A + B’ B’ 1 1 1 B A
42
Latihan - 1 (2 Variabel) Tentukan fungsi boole yang paling sederhana dari fungsi boole berikut ini: Y = A’B’ + A’B Y = A’B’ + AB
43
Peta Karnaugh dengan tiga variabel (1)
Untuk 3 variabel input akan ada sebanyak 23 = 8 kombinasi input Maka banyaknya kotak yang dibutuhkan adalah 8 kotak. Kedelapan kotak tersebut diatur sebagai berikut: A’B’ A’B AB AB’ C’ A’B’C’ A’BC’ ABC’ AB’C’ C A’B’C A’BC ABC AB’C
44
Peta Karnaugh dengan tiga variabel (2)
Penggabungan kotak-kotak untuk 3 variabel (A, B, C) 4 kotak yang bertetangga dekat dapat digabung, akan menyatakan 1 variabel tunggal. 2 kotak yang bertetangga dekat dapat digabung, akan menyatakan 2 variabel. 1 kotak yang tidak bertetangga dekat akan menyatakan 3 variabel
45
Peta Karnaugh dengan tiga variabel (3)
Contoh 1: Y = ABC’ + A’BC + ABC + AB’C AB A’B’ A’B AB AB’ Bisa digabung, dan disederhanakan menjadi Y = AB + BC + AC 1 C’ C 1 1 1 BC AC
46
Peta Karnaugh dengan tiga variabel (4)
Contoh 2: Y = A’B’C + A’BC + ABC + AB’C A’B’ A’B AB AB’ Bisa digabung, dan disederhanakan menjadi Y = C C’ C 1 1 1 1 C
47
Peta Karnaugh dengan tiga variabel (5)
Contoh 3: Y = A’BC’ + A’BC + ABC’ + ABC A’B’ A’B AB AB’ Bisa digabung, dan disederhanakan menjadi Y = B C’ 1 1 C 1 1 B
48
Latihan - 2 (3 Variabel) Tentukan fungsi boole yang paling sederhana dari fungsi boole berikut ini: Y = A’B’C’+AB’C’+A’BC+A’BC’+ABC+ABC’ Y = A’B’C’+A’BC+A’BC’+AB’C+ABC
49
Peta Karnaugh dengan empat variabel (1)
Untuk 4 variabel input akan ada sebanyak 24 = 16 kombinasi input Maka banyaknya kotak yang dibutuhkan adalah 16 kotak. Keenambelas kotak tersebut diatur sebagai berikut: A’B’ A’B AB AB’ C’D’ A’B’C’D’ A’BC’D’ ABC’D’ AB’C’D’ C’D A’B’C’D A’BC’D ABC’D AB’C’D CD A’B’CD A’BCD ABCD AB’CD CD’ A’B’CD’ A’BCD’ ABCD’ AB’CD’
50
Peta Karnaugh dengan empat variabel (2)
Penggabungan kotak-kotak untuk 43 variabel (A, B, C, D) 8 kotak yang bertetangga dekat dapat digabung akan menyatakan 1 variabel tunggal. 4 kotak yang bertetangga dekat dapat digabung akan menyatakan 2 variabel tunggal. 2 kotak yang bertetangga dekat dapat digabung akan menyatakan 3 variabel. 1 kotak yang tidak bertetangga dekat akan menyatakan 4 variabel
51
Peta Karnaugh dengan empat variabel (3)
Contoh 1: Y = ABCD+ABCD’+AB’CD+AB’CD’ A’B’ A’B AB AB’ Bisa digabung, dan disederhanakan menjadi Y = AC C’D’ C’D CD 1 1 CD’ 1 1 AC
52
Peta Karnaugh dengan empat variabel (4)
Contoh 2: Y = A’B’C’D’+AB’C’D’+A’B’CD’+AB’CD’ A’B’ A’B AB AB’ Bisa digabung, dan disederhanakan menjadi Y = B’D’ C’D’ 1 1 C’D CD CD’ 1 1 B’D’
53
Peta Karnaugh dengan empat variabel (4)
Contoh 2: Y = A’B’C’D+A’B’CD+A’BC’D+A’BCD+ABC’D +ABCD+AB’C’D+AB’CD A’B’ A’B AB AB’ Bisa digabung, dan disederhanakan menjadi Y = D C’D’ C’D 1 1 1 1 CD 1 1 1 1 CD’ D
54
Latihan - 3 (4 Variabel) Tentukan fungsi boole yang paling sederhana dari peta karnaugh berikut ini: a) b) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
55
Latihan - 4 Diketahui tabel kebenaran berikut, sederhanakanlah fungsi boole untuk SOP!
56
End of Slide God Bless You
Presentasi serupa
© 2024 SlidePlayer.info Inc.
All rights reserved.