Upload presentasi
Presentasi sedang didownload. Silahkan tunggu
Diterbitkan olehHendra Muljana Telah diubah "6 tahun yang lalu
1
01 SESI 1 MATEMATIKA BISNIS Viciwati STl MSi.
Sesi 1 ini akan membahas manfaat dari mempelajari Matematika Bisnis dalam kehidupan sehari-hari terutama dalam perekonomian Viciwati STl MSi. EKONOMI BISNIS Manajemen dan Akuntansi
2
Defenisi Matematika Bisnis dan Teori Himpunan dan Bilangan
Matematika Bisnis Sesi 1
3
DESKRIPSI MATA KULIAH Mata kuliah ini merupakan alat untuk menyederhanakan penyajian dan pemahaman masalah dengan menggunakan bahasa matematik, suatu masalah dapat menjadi lebih sederhana untuk disajikan, dipahami, dianalisa dan dipecahkan. KOMPETENSI Mahasiswa mampu menerapkan konsep-konsep matematika dalam bidang ekonomi.
4
METODE PEMBELAJARAN Masing-masing mahasiswa diwajibkan membawa buku yang sama dengan buku yang dipakai oleh dosen supaya transfer ilmu bisa berjalan lebih baik. Mahasiswa diharapkan siap untuk berpartisipasi aktif dalam kuliah dan diharapkan juga untuk secara mandiri aktif menemukan (discover) pengetahuan. Di luar kelas, mahasiswa diharapkan aktif berdiskusi dengan teman-temannya. Mahasiswa diwajibkan mempresentasikan hasil diskusi mengenai materi sesuai dengan pembagian kelompok. Dosen akan memberikan kuis mendadak di awal atau akhir kuliah. Mahasiswa diwajibkan membuat seluruh tugas yang diberikan.
5
Deret Hitung dan Ukur dalam Ekonomi dan Bisnis 3
MATERI PERKULIAHAN Sesi MATERI KULIAH 1 Pengantar, Kontrak Perkuliahan/Silabus .Kegunaan Matematika secara umum, Sistem Himpunan dan sistem Bilangan 2 Deret Hitung dan Ukur dalam Ekonomi dan Bisnis 3 Penerapan Deret dalam Kehidupan (Model Bunga Mejemuk dan Pertumbuhan penduduk 4 Fungsi Linier dalam Ekonomi dan Bisnis 5 Penerapan Fungsi Linier dalam Ekonomi dan Bisnis (Keseimbangan pasar, pajak dan subsidi) 6 Penerapan Fungsi Linier dalam Ekonomi dan Bisnis (BEP dan fungsi konsumsi) 7 Fungsi Kuadrat
6
8 MIDTEST 9 Penerapan Fungsi Non Linier dalam Ekonomi dan Bisnis 10 Fungsi Diferensial Sederhana dan Majemuk 11 Penerapan Fungsi Diferensial dalam Ekonomi dan Bisnis 12 Fungsi Integral Tak Tentu dan Tentu 13 Penerapan Integral (surplus produsen dan konsumen) 14 Fungsi Kaidah Matriks (Determinan dan Inverse) 15 Fungsi Persamaan Optimalisasi (linier programming) 16 U A S
7
PENILAIAN UTS/Mid Tes 20% UAS/Final Tes 30% Presentasi Materi berupa teori, contoh soal, dan jawaban 40% Kehadiran 10%
8
PENUGASAN DAN OUTPUT Tugas Presentasi Kelompok Kelompok yang bertugas presentasi membuat : Rangkuman materi untuk setiap topic bahasan yang berisi: Teori Contoh Soal dan Jawaban Bahan presentasi dalam bentuk power point Dikumpulkan dalam bentuk hardcopy (cetak) dan softcopy (melalui paling lambat 1 hari sebelum presentasi
9
TATA TERTIB PERKULIAHAN
Perkuliahan dimulai tepat waktu sesuai dengan jadwal atau kesepakatan kelas. Toleransi keterlambatan 15 menit. Apabila mahasiswa terlambat tetap diperbolehkan masuk untuk mengikuti perkuliahan namun dianggap tidak hadir tanpa alasan (bolos) dalam presensi.
10
Apabila dosen terlambat maka mahasiswa yang datang sebelumnya mendapatkan point bonus 5.
Jumlah kehadiran minimal 75% dari tatap muka (tatap muka minimal 12 kali dan maksimal 14 kali). Apabila mahasiswa tidak dapat memenuhi maka tidak akan mendapatkan nilai (walaupun mengikuti seluruh perkuliahan).
11
Bolos (tidak masuk tanpa ijin) maksimal 3 kali
Tidak masuk karena sakit atau ijin menggunakan surat tidak dianggap bolos Apabila dosen tidak dapat hadir maka perkuliahan tetap ada dengan diberikan tugas yang dikerjakan oleh mahasiswa. Bagi mahasiswa yang masuk (menandatangani daftar hadir) serta mengumpulkan tugas akan diberi point bonus 10
12
Ketentuan ini berlaku apabila dosen sudah tidak hadir lebih dari 25% tatap muka minimal (tatap muka minimal 12 kali dan maksimal 14 kali). Menggunakan kemeja atau kaos berkerah, bercelana panjang atau rok, bersepatu, dan tidak mengenakan topi selama perkuliahan berlangsung
13
Dosen wajib menyerahkan nilai akhir sesuai dengan tanggal pengumuman nilai di kalender akademik. Apabila ada pertanyaan mengenai nilai, dilayani sampai dengan 1 (satu) minggu setelah tanggal tersebut. Pengajuan ujian susulan, baik UTS maupun UAS, hanya dilayani apabila mahasiswa mengajukan surat permohonan yang disetujui oleh Ketua Jurusan S-1 Manajemen FE UMB. Alasan tidak dapat mengikuti ujian yang diterima adalah:
14
sakit (melampiri surat keterangan dokter atau bukti mondok di rumah sakit)
keluarga sakit keras/meninggal dunia (surat keterangan dari pengurus RT) INFORMASI TAMBAHAN Bila ada pertanyaan dapat menghubungi: Viciwati
15
Pendahuluan Dalam kehidupan sehari-hari, tentunya kita tidak akan pernah terlepas dari kegiatan ekonomi. Beberapa istilah-istilah dalam perekonomian keuangan perlu dipahami diantaranya bunga tunggal, diskonto tunggal, bunga majemuk, system kredit-cicilan, dan anuitas.
16
Sebelum membicarakan tentang bahasan bunga tunggal, bunga majemuk dan seterusnya akan diberikan defenisi matematika dan pembahasan tentang prinsip-prinsip matematika yang digunakan dalam ekonomi dan bisnis.
17
DEFENISI MATEMATIKA Asal kata : MATHEIN artinya mempelajari atau belajar. Dengan mempelajari matematika, seseorang akan terbiasa mengatur jalan pemikirannya dgn sistematis. Berpikir matematis: Seseorang yg hendak menem-puh jarak 2 mil akan MEMILIH naik mobil dari pada jalan kaki, kecuali jika waktunya banyak terluang atau sedang berolah raga.
18
Untuk dapat mengenderai mobil, harus belajar menyupir
Untuk dapat mengenderai mobil, harus belajar menyupir. Untuk dapat supir mobil yang baik, dia perlu pengetahuan matematika. Matematika, merupakan sarana = pendekatan untuk suatu analisa. Dengan mempelajari matematika, membawa seseorang kepada kesimpulan dalam waktu yang singkat.
19
PENGGOLONGAN DAN JENIS ANALISA PADA ILMU EKONOMI
1. ILMU DESKRITIF. GAMBARAN TENTANG SUATU KONDISI ATAU KEADAAN DENGAN SEBENARNYA. CONTOH : TURUN NILAI KURS RUPIAH TERHADAP US DOLLAR.
20
2. TEORI ILMU EKONOMI. (TEORI EKONOMI)
2. TEORI ILMU EKONOMI.(TEORI EKONOMI). DIDASARKAN PADA KONDISI NYATA YANG TERJADI PADA MASYARAKAT TERUTAMA SIFAT-SIFAT HUBUNGAN EKONOMI. CONTOH : PERMINTAAN BARANG AKAN NAIK JIKA HARGA TURUN, SEBALIKNYA PERMINTAAN AKAN TURUN JIKA HARGA NAIK. 3. TEORI EKONOMI APLIKASI. MENGANALISA DAN MENELAAH TENTANG HAL-HAL YANG PERLU DILAKUKAN MENGENAI SUATU KEJADIAN DALAM PEREKONOMIAN.
21
Ekonomi dan Matematika Ekonomi
Analisis ekonomi tidak berbeda jika menggunakan pendekatan matematis dibanding dengan tanpa pendekatan matematis. Bedanya/keuntungannya: Dengan pendekatan matematis, persoalan atau pokok bahasan menjadi sederhana. Dengan pendekatan matematis, berarti mengaktifkan logika dengan asumsi-asumsinya.
22
Mis Qd = f(Pr, Inc, Pi, … ), dimana:
Dapat memakai sebanyak n variabel dalam menggambarkan sesuatu (hubungan antar variabel) Mis Qd = f(Pr, Inc, Pi, … ), dimana: Pr = harga komoditi yang bersangkutan Inc = pendapatan, Pi = harga komoditi substitusi
23
Kelemahannya pendekatan matematis:
Bahasa matematis tidak selalu mudah dimengerti oleh ahli ekonomi sehingga sering menimbulkan kesukaran. Contoh Y = f(X), dalam ilmu ekonomi bagaimana mengartikan persamaan matematis tersebut,misal dalam: permintaan, produksi, pendapatan nasional, dan lain-lain sehingga ahli ekonomi sulit memetik keuntungan dari matematika.
24
Seorang ahli ekonomi yang memiliki
pengetahuan dasar matematika, ada kecenderungan: Membatasi diri dengan hanya memecahkan persoalan secara matematis Membuat beberapa asumsi yang kurang tepat demi memudahkan pendekatan matematis atau statistis. Artinya, lebih banyak berbicara matematika dan statistika dari pada prinsip/ teori ekonomi.
25
Kesimpulan dari bahasa adalah:
1. Matematika merupakan pendekatan bagi ilmu ekonomi. 2. Pendekatan matematis merupakan “ mode of transportation” yaitu membawa pemikiran kepada kesimpulan dengan singkat (model)
26
PRINSIP-PRINSIP MATEMATIKA YANG
DIGUNAKAN DALAM EKONOMI DAN BISNIS Dalam ilmu matematika, dikenalkan konsep barisan dan deret aritmetika dan geometri. Konsep dari barisan dan deret tersebut dalam bidang ekonomi antara lain digunakan dalam membahas tentang: model perkembangan usaha, model pertumbuhan penduduk, bunga majemuk, nilai masa datang dari anuitas, dan cadangan, nilai sekarang dari anuitas, dan penyisihan pinjaman
27
Jika perkembangan variable variable tertentu dalam kegiatan usaha (misalnya: produksi, biaya,pendapatan,penggunaan tenaga kerja,penanaman modal) berpola seperti barisan aritmetika, maka prinsip-prinsip barisan aritmetika dapat digunakan untuk menganalisa perkembangan variabel tersebut. Penerapan deret ukur yang paling konvensional dibidang ekonomi adalah dalam hal penghitungan pertumbuhan penduduk,karena penduduk dunia tumbuh mengikuti pola deret ukur.
28
HIMPUNAN dan BILANGAN
29
Definisi Himpunan Konsep himpunan adalah suatu konsep yang paling mendasar bagi Ilmu Matematika modern pada umumnya dan di bidang ilmu ekonomi dan bisnis pada khususnya. Dalam bidang ekonomi dan bisnis terutama dalam hal pembentukan model kita harus menggunakan sehimpunan atau sekelompok data observasi dari lapangan
30
HIMPUNAN Pengertian Himpunan
Himpunan adalah Kumpulan benda atau objek yang didefinisikan (diterangkan) dengan jelas Himpunan dilambangkan dengan huruf kapital misalnya A, B, C, D, …,Z dan objek-objek dari himpunan itu ditulis diantara dua kurung kurawal dan dipisahkan dengan tanda koma Yang dimaksud diterangkan dengan jelas adalah benda atau objeknya jelas mana yang merupakan anggota dan mana yang bukan anggota dari himpunan itu Contoh: A adalah himpunan bilangan asli kurang dari 10 A = { 1,2,3,4,5,6,7,8,9 }
31
Soal : Nyatakan himpunan berikut dalam bentuk notasi
Soal : Nyatakan himpunan berikut dalam bentuk notasi pembentuk himpunan B adalah bilangan Asli yang lebih dari 3 dan kurang atau sama dengan 15 2. C adalah bilangan bulat lebih dari atau sama dengan -5 tetapi kurang dari 10 3. D adalah bilangan ganjil kurang dari 20 Jawaban : 1. B = { x | 3 < x ≤ 15 , x A} 2. C = { x | -5 ≤ x < 10 , x B } 3. D = { x | x < 20 , x A }
32
Contoh soal : Nyatakan soal di atas dengan cara mendaftar anggotanya
Jawaban: 1. B = { x | 3 < x ≤ 15 , x A} = { 4,5,6,7,8,9,10,11,12,13,14,15 } 2. C = { x | -5 ≤ x < 10 , x B } = { -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 } 3. D = { x | x < 20 , x A } = { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 }
33
Lambang dibaca “elemen” atau anggota
Keanggotaan Suatu Himpunan Contoh: A = { 1, 3, 5, 7, 9 } B = { 2, 4, 6, 8, 10, 12 } 1 A 1 B 2 B 2 A 3 A 3 B 4 B 4 A 5 A 5 B 6 B 6 A 7 A 7 B 8 B 8 A 9 A 9 B 10 B 10 A 12 B 12 A Banyaknya anggota himpunan A dilambangkan dengan n(A) = 5 Banyaknya anggota himpunan B dilambangkan dengan n(B) = 6 Lambang dibaca “elemen” atau anggota Catatan: Lambang dibaca “bukan elemen” atau bukan anggota Lambang n(A), n(B) disebut bilangan kardinal
34
D = { x | x orang yang tingginya lebih dari 5 m}
HIMPUNAN KOSONG DEFINISI: Himpunan Kosong adalah himpunan yang tidak memiliki anggota dan dilambangkan dengan { } atau Contoh: D = { x | x orang yang tingginya lebih dari 5 m} F = { x | x bilangan prima antara 7 dan 11 } Pada contoh di atas adakah saat ini orang yang tingginya lebih dari 5 meter dan adakah bilangan prima diantara 7 dan 11 ? (coba pikir)
35
Coba kalian perhatikan, adakah anggota himpunan L dan G yang sama ?
Himpunan Lepas Definisi: Dua himpunan yang tidak kosong dikatakan saling lepas jika kedua himpunan itu tidak mempunyai satupun anggota yang sama Contoh : L = { 1, 3, 5, 7, 9, 11, 13, 15 } G = { 2, 4, 6, 8, 10, 12, 14, 16 } Coba kalian perhatikan, adakah anggota himpunan L dan G yang sama ? Karena tidak ada anggota himpunan L dan G yang sama maka himpunan L dan G adalah dua himpunan yang saling lepas, jadi L // G Himpunan Tidak Saling Lepas Definisi: Dua himpunan yang tidak kosong dikatakan tidak saling lepas (berpotongan) jika kedua himpunan itu mempunyai anggota yang sama Contoh : P = { 1, 2, 3, 4, 5, 6, 7, 8 } Q = { 2, 4, 6, 8, 10, 12, 14, 16 } Himpunan P dan himpunan Q tidak saling lepas karena mempunyai anggota yang sama (persekutuan) yaitu 2, 4, 6, dan 8, jadi P Q
36
Himpunan Semesta Definisi :
Himpunan Semesta adalah himpunan yang memuat semua objek yang dibicarakan Contoh : A = { 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15} D = { 2,3,5,7,11 } B = { -3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11 } E = { 0, 2, 4, 6 } C = { 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14 } Perhatikan setiap anggota himpunan A, B, C, D, dan E 1. Apakah setiap anggota himpunan D ada di dalam himpunan A, B, dan C ? 2. Apakah setiap anggota himpunan E ada di dalam himpunan A, B, dan C ? Setiap anggota himpunan D yaitu 2,3,5,7,11 ada di dalam Himpunan A, B, C. Oleh karena itu Himpunan A,B,C adalah Himpunan Semesta dari Himpunan D Setiap anggota Himpunan E yaitu 0,2,4,6 ada di dalam himpunan B dan C, tetapi angka 0 tidak ada di dalam himpunan A. Oleh karena itu Himpunan B dan C merupakan Himpunan semesta dari himpunan E, dan Himpunan A bukan himpunan semesta dari himpunan E
37
a. Apakah himpunan B merupakan himpunan bagian dari himpunan A ?
Definisi: A adalah himpunan bagian dari himpunan B apabila setiap anggota himpunan A juga menjadi anggota himpunan B dilambangkan dengan A B Contoh: S = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 } A = { 0, 1, 2, 3, 4, 5, 6, 7 } ; B = { 1, 2, 3, 4 } ; C = { 6, 7, 8, 9 } a. Apakah himpunan B merupakan himpunan bagian dari himpunan A ? b. Apakah himpunan C merupakan himpunan bagian dari himpunan A ? Perhatikan setiap anggota himpunan A, B, C Karena setiap anggota himpunan B juga merupakan anggota himpunan A maka himpunan B merupakan himpunan bagian dari himpunan A, jadi B A Karena ada anggota himpunan C yaitu 8 dan 9 tidak terdapat di dalam himpunan A maka himpunan C bukan himpunan bagian dari himpunan A, jadi C A
38
Rumus Banyaknya Himpunan Bagian
Jika suatu himpunan mempunyai anggota sebanyak n(A) maka banyaknya himpunan bagian dari A adalah sebanyak 2n(A) Contoh: Tentukan banyaknya himpunan bagian yang mungkin dari himpunan berikut A = { a, b, c } B = { 1, 2, 3, 4, 5 } C = { 2, 3, 4, 5, 6, 7, 8 } Jawab: n(A) = 3 maka banyaknya himpunan bagian yang mungkin dari A adalah 23 = 2 x 2 x 2 = 8 n(B) = 5 maka banyaknya himpunan bagian yang mungkin dari B adalah 25 = 2 x 2 x 2 x 2 x 2 = 32 n(C) = 7 maka banyaknya himpunan bagian yang mungkin dari C adalah 27 = 2 x 2 x 2 x 2 x 2 x 2 x 2 = 128
39
Himpunan Sama Definisi: Dua himpunan dikatakan sama apabila setiap anggota kedua himpunan itu sama bentuk dan jumlahnya Contoh : A = { a, I, u, e, o } ; B = { u, a, I, o, e } Kedua himpunan A dan B anggota-anggotanya sama yaitu a,I,u,e, dan o maka himpunan A = B Himpunan Ekuivalen Definisi: Dua himpunan dikatakan Ekuivalen apabila jumlah anggota kedua himpunan itu sama tetapi bendanya ada yang tidak sama Contoh : P = { a, I, u, e, o } ; Q = { 1, 2, 3, 4, 5 } Kedua himpunan P dan Q anggota-anggotanya tidak sama tetapi jumlah anggotanya sama maka himpunan P Ekuivalen dengan Q, jadi ( P ~ Q )
40
Irisan Dua Himpunan (Interseksi) Definisi:
Irisan himpunan A dan B ditulis A B adalah himpunan semua objek yang menjadi anggota himpunan A sekaligus menjadi anggota himpunan B Contoh: Bila P = {a, b, c, d, e } dan Q = {d, e, f, g, h }. Tentukan P Q Jawab : P Q = { d, e } Gabungan Dua Himpunan ( Union) Definisi: Gabungan himpunan A dan B ditulis A B adalah himpunan semua objek yang menjadi anggota himpunan A atau menjadi anggota himpunan B Contoh: Bila P = {a, b, c, d, e } dan Q = {d, e, f, g, h }. Tentukan P Q Jawab : P Q = { a, b, c, d, e, f, g, h }
41
Komplemen (Complement)
Komplemen dari himpunan A adalah himpunan yang terdiri dari unsur-unsur yang terdapat dalam himpunan semesta U tapi tidak merupakan unsur dari himpunan A. Notasi : A’ atau Ā, maka U A’ A
42
Gabungan (Union) Gabungan dari himpunan A dan B adalah suatu himpunan dimana unsur-unsurnya adalah unsur yang berada di A atau di B atau dikeduanya. U A B
43
Irisan (Intersection)
Irisan dari himpunan A dan B adalah suatu himpunan yang unsur-unsurnya dimiliki oleh A dan juga dimiliki oleh B secara bersamaan. U B A
44
Selisih Himpunan (Set Difference)
Selisih dari dua himpunan A dan B adalah suatu himpunan yang semua unsur-unsurnya termasuk di A tetapi tidak termasuk di B. U B A
45
Diagram Venn Langkah-langkah menggambar diagram venn
1. Daftarlah setiap anggota dari masing-masing himpunan 2. Tentukan mana anggota himpunan yang dimiliki secara bersama-sama 3. Letakkan anggota himpunan yang dimiliki bersama ditengah-tengah Buatlah lingkaran sebanyak himpunan yang ada yang melingkupi anggota bersama tadi Lingkaran yang dibuat tadi ditandai dengan nama-nama himpunan Selanjutnya lengkapilah anggota himpunan yang tertulis didalam lingkaran sesuai dengan daftar anggota himpunan itu Buatlah segiempat yang memuat lingkaran-lingkaran itu, dimana segiempat ini menyatakan himpunan semestanya dan lengkapilah anggotanya apabila belum lengkap
46
Contoh: Diketahui: S = { 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14 } A = { 1,2,3,4,5,6 } B = { 2,4,6,8,10 } C = { 3,6,9,12 } Gambarlah diagram Venn untuk menyatakan himpunan di atas Jawab: 6 adalah anggota yg dimiliki oleh himpunan A,B,C S A 7 3 dan 6 adalah anggota yg dimiliki oleh himpunan A dan C 1 9 3 5 12 6 4 2,4, 6 adalah anggota yg dimiliki oleh himpunan A dan B 2 C 14 8 10 13 11 B
47
Contoh 2: Dari 32 siswa terdapat 21 orang gemar melukis, 16 orang gemar menari dan 10 orang gemar keduanya. Ada berapa orang siswa yang hanya gemar melukis? b. Ada berapa orang siswa yang hanya gemar menari? c. Ada berapa orang siswa yang tidak gemar keduanya? Jawab: N(S) = 32 Misalnya : A = {siswa gemar melukis} n(A) = 21 B = {siswa gemar menari} n(B) = 16 A B = {siswa gemar keduanya} n(A B) = 10 Perhatikan Diagram Venn berikut a. Ada 11 siswa yang hanya gemar melukis S A B b. Ada 6 siswa yang hanya gemar menari 11 10 6 c. Ada 5 siswa yang tidak gemar keduanya 5
48
Diketahui : S = { x | 10 < x ≤ 20, x B }
Contoh 3: Diketahui : S = { x | 10 < x ≤ 20, x B } M = { x | x > 15, x S } N = { x | x > 12, x S } Gambarlah diagram vennya Jawab : S = { x | 10 < x ≤ 20, x B } = { 11,12,13,14,15,16,17,18,19,20 } M = { x | x > 15, x S } = { 16,17,18,19,20} N = { x | x > 12, x S } = { 13,14,15,16,17,18,19,20} M N = { 16,17,18,19,20 } Diagram Vennya adalah sbb: S N 16 18 M 20 17 19 11 13 14 12 15
49
Ada berapa orang siswa yang suka bakso dan siomay?
Contoh 4: Dari 60 siswa terdapat 20 orang suka bakso, 46 orang suka siomay dan 5 orang tidak suka keduanya. Ada berapa orang siswa yang suka bakso dan siomay? b. Ada berapa orang siswa yang hanya suka bakso? c. Ada berapa orang siswa yang hanya suka siomay? Jawab: N(S) = 60 Misalnya : A = {siswa suka bakso} n(A) = 20 B = {siswa suka siomay} n(B) = 46 (A B)c = {tidak suka keduanya} n((A B)c) = 5 Maka A B = {suka keduanya} n(A B) = x {siswa suka bakso saja} = 20 - x n(S) = (20 – x)+x+(46-x)+5 60 = 71 - x {siswa suka siomay saja} = 46 - x X = 71 – 60 = 11 Perhatikan Diagram Venn berikut Yang suka keduanya adalah x = 11 orang S Yang suka bakso saja adalah 20-x = 20-11= 9 orang A 20 - x x 46 - x B Yang suka siomay saja adalah 46-x = 46-11= 35 orang 5
50
Latihan 1 Dari survei terhadap 270 orang didapatkan hasil sbb :
64 suka donat, 94 suka bolu, 58 suka kacang, 26 suka donat dan bolu, 28 suka donat dan kacang, 22 suka bolu dan kacang, 14 suka ketiga jenis makanan tersebut. Berapa orang tidak suka makan semua jenis makanan yang disebutkan di atas ?
51
Penyelesaian A = {orang yang suka donat} B = {orang yang suka bolu}
C = {orang yang suka kacang } |A ∪ B ∪ C| = |A| + |B| + |C| – |A ∩ B| – |A ∩ C| – |B ∩ C| + |A ∩ B ∩ C| = – 26 – 28 – = 154 Jadi mereka yang tidak suka ketiga jenis makanan tersebut ada sebanyak 270 – 154 = 116 orang jenis sayur
52
Penyelesaian 64 suka donat, DONAT 94 suka bolu 58 suka kacang,
26 suka donat & bolu, 28 suka donat & kacang, 22 suka bolu & kacang 14 suka ketiga jenis makanan tsb a + b + d + e = 64 b + c + e + f = 94 d + e + f + g = 58 b + e = 26 d + e = 28 e + f = 22 e = 14 DONAT BOLU a = 24 b= 12 c = 60 e = 14 d = 14 f = 8 g = 22 KACANG yang tidak suka makanan = = 116
53
Latihan 2 Gambarkan sebuah diagram venn untuk menunjukkan himpunan universal U dan himpunan-himpunan bagian A serta B jika : U = {1,2,3,4,5,6,7,8 } A = {2,3,5,7} B = {1,3,4,7,8 } Kemudian selesaikan : (a) A – B (c) A ∩ B (e) A ∩ B (b) B – A (d) A U B (f) B ∩ Ā
54
Himpunan Bilangan Himpunan bilangan yang pertama kita kenal adalah himpunan bilangan bulat positif (himpunan bilangan asli/bilangan alam), yaitu ,1,2,3,... Notasinya adalah N. Himpunan N tertutup terhadap operasi-operasi perkalian dan pertambahan. Artinya bila kita lakukan operasi-operasi tersebut pada himpunan bilangan asli maka hasilnya juga merupakan bilangan asli. Tetapi untuk operasi pengurangan dan pembagian tidaklah demikian. Jadi N tidak tertutup terhadap operasi pengurangan dan pembagian. Artinya bila kita operasikan operasi tersebut terhadap himpunan bilangan asli maka akan menimbulkan himpunan bilangan baru. a – b akan menghasilkan bil asli bila a > b a : b akan menghasilkan bil asli bila a merupakan kelipatan dari b
55
Operasi Himpunan (Set Operation)
Beberapa operasi himpunan diantaranya :
56
Adapun operasi penambahan dan perkalian pada bilangan asli tunduk pada hukum-hukum berikut: 1. a+b = b+a ; hukum komutasi penjumlahan 2.(a+b)+c=a+(b+c); hukum asosiasi penjumlahan 3. axb = bxa ; hukum komutasi perkalian 4. (a+b)xc = ac+bc ; hukum distribusi perkalian
57
Karena bilangan asli tertutup untuk operasi pengurangan dan pembagian, maka para matematikawan menciptakan bilangan nol, bilangan bulat negatif dan bilangan pecahan. Bilangan pecahan dapat ditulis dalam bentuk desimal. Desimalnya selalu berakhir atau berulang. Misal: ½ = 0,5 13/11 = 2/7 = 0, ( berulang) 11/13 = 0, ( berulang)
58
Gabungan bilangan bulat dan bilangan pecahan disebut bilangan rasional
Gabungan bilangan bulat dan bilangan pecahan disebut bilangan rasional. Ternyata bilangan rasional juga tidak mampu untuk memenuhi akan bilangan matematika. Maka pada tahun 500 SM, Phytagoras memperkenalkan suatu bilangan yang disebut bilangan Irrasional. Misal: = 1, = 3, e = 2,
59
Bilangan riil adalah bilangan yang mungkin bulat, mungkin pecahan dan mungkin irrasional.
60
Skema Himpunan Bilangan
Bilangan Kompleks Bilangan Nyata (Riil) Bilangan Irrasional Bilangan Rasional Bilangan Bulat Positif Nol Negatif Bilangan Pecahan Bilangan Khayal
61
Pangkat Akar & Logaritma
62
Pangkat Kaidah pemangkatan bilangan Kaidah perkalian bilangan berpangkat Kaidah pembagian bilangan berpangkat Akar Kaidah pengakaran bilangan Kaidah penjumlahan bilangan terakar Kaidah perkalian bilangan terakar Kaidah pembagian bilangan terakar Logaritma - Basis Logaritma - Kaidah-kaidah Logaritma - Penyelesaian Persamaan dengan Logaritma
63
Pangkat Pangkat dari sebuah bilangan ialah suatu indeks yang menunjukkan banyaknya perkalian bilangan yang sama secara berurutan. Notasi xa : bahwa x harus dikalikan dengan x itu sendiri secara berturut-turut sebanyak a kali.
64
Kaidah Pemangkatan Bilangan
65
Kaidah perkalian bilangan berpangkat
67
Akar Akar merupakan bentuk lain untuk menyatakan bilangan berpangkat.
Akar dari sebuah bilangan ialah basis (x) yang memenuhi bilangan tersebut berkenaan dengan pangkat akarnya (a). Bentuk umum :
68
Kaidah pengakaran bilangan
69
Kaidah penjumlahan (pengurangan) bilangan terakar
Bilangan-bilangan terakar hanya dapat ditambahkan atau dikurangkan apabila akar-akarnya sejenis.
70
Kaidah perkalian bilangan terakar
71
Hasil bagi bilangan-bilangan terakar adalah akar dari hasil bagi bilangan-bilangannya. Pembagian hanya dapat dilakukan apabila akar-akarnya berpangkat sama.
72
Logaritma Logaritma pada hakekatnya merupakan kebalikan dari proses pemangkatan dan/atau pengakaran. Suku-suku pada ruas kanan menunjukkan bilangan yang dicari atau hendak dihitung pada masing-masing bentuk
73
Basis Logaritma Logaritma dapat dihitung untuk basis berapapun.
Biasanya berupa bilangan positif dan tidak sama dengan satu. Basis logaritma yang paling lazim dipakai adalah 10 (common logarithm)/(logaritma briggs) logm berarti 10 log m, log 24 berarti 10 log 24 Logaritma berbasis bilangan e (2,72) disebut bilangan logaritma alam (natural logarithm) atau logaritma Napier ln m berarti elogm
74
Kaidah-kaidah Logaritma
75
Penyelesaian Persamaan dengan Logaritma
Logaritma dapat digunakan untuk mencari bilangan yang belum diketahui (bilangan anu) dalam sebuah persamaan, khususnya persamaan eksponensial dan persamaan logaritmik. Persamaan logaritmik ialah persamaan yang bilangan anunya berupa bilangan logaritma, sebagai contoh : log (3x + 298) = 3
76
Latihan Dengan melogaritmakan kedua ruas, hitunglah x untuk 3x+1 = 27
Selesaikan x untuk log (3x + 298) =3
77
Viciwati, STL, MSi.
Presentasi serupa
© 2024 SlidePlayer.info Inc.
All rights reserved.