Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

LOGIKA FUZZY.

Presentasi serupa


Presentasi berjudul: "LOGIKA FUZZY."— Transcript presentasi:

1 LOGIKA FUZZY

2 Logika Fuzzy  suatu cara yang tepat untuk memetakan suatu ruang input ke dalam suatu ruang output
Gugus Fuzzy diperkenalkan pertama kali oleh Prof. L. A. Zadeh dan Barkeley pada tahun 1965 Pelayan restoran memberikan pelayanan terhadap tamu, kemudian tamu akan memberikan tip yang sesuai atas baik tidaknya pelayanan yang diberikan Anda mengatakan kepada saya seberapa sejuk ruangan yang anda inginkan, saya akan mengatur putaran kipas yang ada pada ruangan ini Penumpang taksi berkata kepada supir taksi cepat laju kendaraan yang diinginkan, supir taksi akan mengatur pijakan gas taksinya.

3 Alasan digunakannya logika fuzzy

4 Aplikasi Logika Fuzzy Transmisi otomatis pada mobil, mobil Nissan telah menggunakan sistem fuzzy pada transmisi otomatis, dan mampu menghemat bensin 12 – 17% Kereta bawah tanah Sendai mengontrol pemberhentian otomatis pada area tertentu Psikologi, seperti logika fuzzy untuk menganalisis kelakuan masyarakat, pencegahan dan investigasi kriminal Ilmu lingkungan, seperti kendali kualitas air, prediksi cuaca dll Manajemen dan pengambilan keputusan, seperti manajemen basis data yang didasarkan pada logika fuzzy, sistem pembuat keputusan di militer yang didasarkan pada logika fuzzy Riset operasi, seperti penjadwalan dan pemodelan, pengalokasian, dll

5 Himpunan Fuzzy Pada himpunan tegas (crisp) nilai keanggotaan suatu item x dalam suatu himpunan A, yang sering ditulis dengan μA(x) memiliki 2 kemungkinan yakni: Satu (1), yang berarti bahwa suatu item menjadi anggota dalam suatu himpunan Nol (0), yang berarti bahwa suatu item tidak menjadi anggota dalam suatu himpunan

6 Contoh S = { 1, 2, 3, 4, 5, 6 } A = { 1, 2, 3 } B = { 3, 4, 5 } Nilai keanggotaan 2 pada himpunan A, karena Nilai keanggotaan 3 pada himpunan A, karena Nilai keanggotaan 4 pada himpunan A, karena Nilai keanggotaan 2 pada himpunan B, karena Nilai keanggotaan 3 pada himpunan B, karena

7 Himpunan MUDA, PAROBAYA dan TUA
Contoh : Himpunan MUDA, PAROBAYA dan TUA MUDA umur < 35 tahun PAROBAYA ≤ umur ≤ 55 tahun TUA umur > 55 tahun

8 Bila seseorang berusia 34 tahun  ia dikatakan MUDA (μMUDA[34]=1)
Seseorang berusia 35 tahun  TIDAK MUDA (μMUDA[35]=0) Seseorang berusia 35 tahun kurang 1 hari  TIDAK MUDA (μMUDA[35-1hari]=0) Seseorang berusia 35 tahun PAROBAYA (μPAROBAYA[35]=1) Seseorang berusia 34 tahun TIDAK PAROBAYA (μPAROBAYA[34]=0) Seseorang berusia 35 tahun kurang 1 hari  TIDAK PAROBAYA (μPAROBAYA[35- 1 hari]=0)

9 Pemakaian himpunan crisp untuk menyatakan umur sangat tidak adil, karena adanya perubahan kecil pada suatu nilai mengakibatkan perbedaan kategori yang cukup signifikan Himpunan fuzzy digunakan untuk mengantisipasi hal tersebut. Seseorang dapat masuk dalam 2 himpunan yang berbeda, MUDA dan PAROBAYA, PAROBAYA dan TUA dsb Seberapa besar eksistensinya dapam himpunan tersebut dapat dilihat pada nilai keanggotaannya.

10 Himpunan fuzzy untuk variabel umur
Seseorang yang berumur 40 tahun, termasuk dalam himpunan MUDAdengan μMUDA[40]=0.25; namun dia juga termasuk dalam himpunan PAROBAYA dengan μPAROBAYA[40]=0.5 Seseorang yang berumur 50 tahun, termasuk dalam himpunan TUA dengan μTUA[50]=0.25; namun dia juga termasuk dalam himpunan PAROBAYA dengan μPAROBAYA[50]=0.5 Kalau pada himpunan crisp, nilai keanggotaan hanya ada 2 kemungkinan, yakni 0 atau 1. Pada himpunan fuzzy nilai keanggotaan terletak pada rentang 0 sampai 1. bila x memiliki nilai keanggotaan μA[x]=0 berarti x tidak menjadi anggota himpunan A. bila μA[x]=1, maka x menjadi anggota penuh himpunan A.

11 Himpunan Fuzzy memiliki 2 atribut
Linguistik  penamaan suatu grup yang mewakili suatu keadaan atau kondisi tertentu dengan menggunakan bahasa alami seperti: MUDA, PAROBAYA, TUA Numerik  suatu nilai (angka) yang menunjukkan ukuran dari suatu variabel seperti 40, 25, 50 dsb

12

13 Beberapa hal yang perlu diketahui dalam pemahaman sistem fuzzy
Variabel fuzzy Merupakan variabel yang hendak dibahas dalam suatu sistem fuzzy. Mis: umur, temperatur, permintaan dsb Himpunan fuzzy Merupakan suatu grup yang mewakili suatu kondisi atau keadaan tertentu dalam suatu variabel fuzzy Contoh: Variabel umur terbagi menjadi 3 himpunan fuzzy: MUDA, PAROBAYA, TUA Variabel temperatur terbagi menjadi 5 himpunan fuzzy: DINGIN, SEJUK, NORMAL, HANGAT dan PANAS.

14

15 Semesta pembicaraan Adalah keseluruhan nilai yang diperbolehkan untuk dioperasikan dalam suatu variabel fuzzy Merupakan himpunan bilangan real yang senantiasa naik (bertambah) secara monoton dari kiri ke kanan Dapat bernilai positif maupun negatif Contoh: - Semesta pembicaraan untuk variabel umur : [0, +∞) - Semesta pembicaraan untuk variabel temperatur : [0, 40]

16 Domain himpunan fuzzy Adalah keseluruhan nilai yang diijinkan dalam semesta pembicaraan dan boleh dioperasikan dalam suatu himpunan fuzzy Merupakan himpunan bilangan real yang senantiasa naik secara monoton dari kiri ke kanan Nilai domain dapat berupa bilangan positif maupun negatif MUDA = [0 45] PAROBAYA = [35 55] TUA = [45 +∞] DINGIN = [0 20] SEJUK = [15 25] NORMAL = [20 30] HANGAT = [25 35] PANAS = [30 40]

17 Fungsi Keanggotaan Merupakan pemetaan titik-titik input data ke dalam nilai keanggotaannya, yang memiliki interval antara 0 sampai 1. Salah satu cara untuk mendapatkan nilai keanggotaan adalah dengan melalui pendekatan fungsi: Representasi linear Representasi kurva segitiga Representasi kurva trapesium Representasi kurva bentuk bahu Representasi kurva – S Representasi kurva bentuk lonceng

18 Representasi Linear Fungsi keanggotaan: Linear naik 0; x ≤ a
μ[x] = (x – a)/(b – a); a ≤ x ≤ b 1; x ≥ b Fungsi keanggotaan: Linear turun μ[x] = (b - x)/(b – a); a ≤ x ≤ b 0; x ≥ b

19

20 Representasi kurva segitiga
Fungsi keanggotaan: 0; x ≤ a atau x ≥ c μ[x] = (x – a)/(b – a); a ≤ x ≤ b (c – x)/ (c – b) b ≤ x ≤ c

21 Representasi kurva trapesium
Fungsi keanggotaan: 0; x ≤ a atau x ≥ d μ[x] = (x – a)/(b – a); a ≤ x ≤ b 1; b ≤ x ≤ c (d – x)/ (d – c) x ≥ d

22 Representasi kurva bentuk bahu

23 Representasi kurva – S

24 Representasi kurva bentuk lonceng
Kurva Beta Kurva Gauss


Download ppt "LOGIKA FUZZY."

Presentasi serupa


Iklan oleh Google