Upload presentasi
Presentasi sedang didownload. Silahkan tunggu
Diterbitkan olehSri Johan Telah diubah "6 tahun yang lalu
1
Kontrak Perkuliahan KALKULUS I Ayundyah Kesumawati Kode Mata Kuliah
3 SKS
2
Silabus Materi yang akan dibahas dalam satu semester, sbb :
Definisi dan operasi himpunan Sifat bilangan real, binomiom Newton dan induksi matematika Sistem koordinat kartesios dan kutub Logika matematika, Permutasi, Kombinasi Definisi fungsi dan klasifikasinya. Fungsi dan Persamaan. contoh fungsi dalam statistik, grafik fungsi. Penggunakan software Maple Definisi limit, limit nol, limit tak hingga, teorema dalam limit, kekontinuan Definisi derivatif, teorema dalam derivatif. Teorma Role, Teorema nilai rata-rata, Teorema Taylor, McLaurin, aturan Hospital. Maksimum minimum, aplikasi dalam grafik fungsi, kecepatan dan aplikasi derivatif dalam statistika.
3
Acuan Pustaka Acuan Pustaka :
Purcell, 1999,“Kalkulus dan Geometri analitik”. Leithold, “Calculus and Anlytic Geometry”. Fajriyah, R., 2004, Diktat Kalkulus I, FMIPA UII
4
UTS Minggu Ke- Pokok Bahasan Materi 1 Himpunan
Definisi dan operasi himpunan 2 Sistem Bilangan Sifat bilangan real, binomiom Newton dan induksi matematika 3 Sistem Koordinat Sistem koordinat kartesios dan kutub 4 Logika dan Counting sistem Logika matematika, Permutasi, Kombinasi 5 -6 Fungsi Definisi fungsi dan klasifikasinya. Fungsi dan Persamaan. contoh fungsi dalam statistik, grafik fungsi. Penggunakan software Maple 7 UTS 8-9 Limit Definisi limit, limit nol, limit tak hingga, teorema dalam limit, kekontinuan 10-12 Derivatif (Turunan) Definisi derivatif, teorema dalam derivatif. Teorma Role, Teorema nilai rata-rata, Teorema Taylor, McLaurin, aturan Hospital 13-15 Aplikasi derivatif Maksimum minimum, aplikasi dalam grafik fungsi, kecepatan dan aplikasi derivatif dalam statistika 16 UAS
5
No Komponen Prosentase 1. 2. 3. 4.
Komponen Penilaian No Komponen Prosentase 1. Tugas (2 kali) (nilai rata-rata) 25% 2. Quiz (insidentil) Diambil nilai paling tinggi 15% 3. UTS 30% 4. UAS
6
Tata Tertib Perkuliahan
Mahasiswa diharapkan mempersiapkan diri sebelum masuk kelas dengan membaca materi yang akan dipelajari. Keterlambatan 15 menit. Tidak akan ada susulan quiz, UTS dan UAS tanpa surat keterangan dokter. Surat keterangan dokter harap diberikan sesegera mungkin, dan pada saat jadwal quiz atau ujian, kondisi ini sudah harus diketahui dosen. Dosen tidak wajib memberitahu jadwal quiz. Mahasiswa diharapkan mengisi daftar hadir. Kecurangan (mengabsenkan orang lain, menyontek, dll) bisa didiskualifikasi dan mendapat nilai E.
7
HIMPUNAN Himpunan Jenis-jenis himpunan 1. Himpunan kosong & semesta
2. Himpunan berhingga & tak berhingga 3. Himpunan bagian (subset) 4. Himpunan saling lepas 5. Himpunan Kuasa (Power Set) 6. Himpunan Komplemen Operasi Pada Himpunan Operasi Gabungan (+) Operasi Selisih (-) Operasi Irisan () Operasi Kartesian Operasi Komplemen Cara Menuliskan Himpunan Enumerasi Simbol Baku Notasi Pembentuk Himpunan Diagram Venn HIMPUNAN
8
Definisi Himpunan Himpunan adalah kumpulan objek.
Himpunan ditentukan oleh anggota-anggotanya dan bukan oleh urutan tertentu dalam mendaftarkan anggotanya. Anggota-anggota yang membentuk himpunan adalah berbeda. Contoh : Sebuah himpunan dapat dinyatakan dengan menyebutkan sifat-sifatnya, atau dengan mendaftar elemen-elemennya. Misalnya, himpunan bilangan prima yang kurang dari atau sama dengan 5, dapat dinyatakan sebagai {2, 3, 5}, atau {x|xbilangan prima 5}.
9
Himpunan Kosong dan Semesta
Ada tepat satu himpunan yang tidak memiliki elemen, yang disebut sebagai himpunan kosong, dan dinotasikan sebagai . Sebuah himpunan S tersusun atas elemen-elemen, dan jika a merupakan salah satu elemennya, maka dapat dinotasikan a S.
10
Himpunan Berhingga dan Himpunan Kuasa
Himpunan berhingga dan kardinalitas jika himpunan A memiliki n buah elemen yang berbeda, maka A adalah himpunan berhingga (finite set), dan n adalah kardinalitas dari A. Kardinalitas dari A dinotasikan dengan |A| atau n(A) Himpunan kuasa (power set) himpunan kuasa dari A adalah himpunan dari seluruh subset A dan dinotasikan dengan P(A). Kardinalitas dari P(A) dinotasikan dengan |P(A)| atau n(P(A)). |P(A)| atau n(P(A)) = 2n(A)
11
Himpunan Bagian Sebuah himpunan B merupakan himpunan bagian (subset) dari himpunan A dan dinotasikan ”B A” atau ”A B”, jika setiap elemen B merupakan elemen A.
12
Himpunan Saling Lepas Himpunan A dan B dikatakan lepas (dinotasikan A||B) jika hanya jika kedua himpunan itu tak kosong dan tidak mempunyai elemen yang sama. Contoh : A = {x|x2 − 8x + 12 = 0} dan B = {x|x2 − 4 = 0} tidak lepas, 2 P = {x|x2 − 8x + 12 = 0} dan Q = {1, 3, 5} lepas.
13
Gabungan Gabungan himpunan A dan B (dinotasikan A B) adalah himpunan semua elemen A atau semua elemen B atau elemen keduanya. Secara notasi operasi gabungan dapat ditulis Contoh : Jika P = {a, b, c, d} dan Q = {c, d, e, f } maka P Q = {a, b, c, d, e, f }
14
Irisan Irisan himpunan A dan B (dinotasikan A B) adalah himpunan semua elemen persekutuan dari himpunan A dan B. Secara notasi operasi irisan dapat ditulis A B
15
Selisih Selisih dari himpunan A dan B adalah himpunan yang elemennya merupakan elemen A dan bukan elemen B Notasi: A - B = {x | x A dan x B } = A B’ A B
16
Komplemen Komplemen suatu himpunan A (dinotasikan A1 atau Ac) adalah himpunan semua elemen dalam semesta pembicaraan tetapi bukan elemen A. Secara notasi operasi komplemen dapat ditulis A B
17
Produk Cartesian cartesian products dari himpunan A dan B adalah himpunan yang elemennya semua pasangan berurutan yang mungkin terbentuk dengan komponen pertama dari himpunan A dan komponen kedua dari himpunan B Notasi: A x B = { (a,b) | a A, b B} Contoh: A = {1,2,3} B = {a,b} A x B = {(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)}
18
Produk Cartesian Catatan: a. Jika A dan B merupakan himpunan berhingga, maka n(A x B) = n(A).n(B) b. Pasangan berurutan (a,b) berbeda dengan (b,a) c. A x B B x A
19
Penyajian Himpunan 1. Enumerasi
menuliskan semua elemen himpunan yang bersangkutan di antara dua buah tanda kurung kurawal Contoh: A = {1,2,3,4} 2. Simbol-simbol baku antara lain: P = himpunan bilangan bulat positif={1,2,3,…} N = himpunan bilangan natural/alami = {0,1,2,…} Z = himpunan bilangan bulat = {…,-2,-1,0,1,2,…}
20
3. Notasi pembentuk himpunan
menuliskan syarat keanggotaan himpunan Contoh: A = {x | x P, x < 5} ekivalen dengan {1,2,3,4} M = {x | x adalah mahasiswa yang mengambil kuliah Logika Matematika}
21
4. Diagram Venn Himpunan semesta, yang beranggotakan seluruh objek yang penting atau merupakan topik pembicaraan, direpresentasikan dengan bentuk kotak. Di dalam kotak tersebut terdapat lingkaran-lingkaran untuk merepresentasikan himpunan. Kadang tanda titik dipergunakan pula untuk menggambarkan elemen himpunan. Contoh: Diagram Venn yang menggambarkan himpunan V yaitu himpunan huruf vokal dalam bahasa Indonesia
22
Teorema Aljabar Himpunan
Misal S himpunan semesta dan A,B, dan C adalah subhimpunan dari S maka berlaku sifat berikut: 1. Hukum asosiatif (associative law) (A B) C = A (B C) (A B) C = A (B C) (A B) C = A (B C) 2. Hukum komutatif (commutative law) A B = B A, A B = B A, A B = B A 3. Hukum distributif (distributive law) A (B C) = (A B) (A C) A (B C) = (A B) (A C)
23
4. Hukum identitas (identity law) A = A, A S = A 5
4. Hukum identitas (identity law) A = A, A S = A 5. Hukum komplemen (complement law) A A’ = S, A A’ = 6. Hukum idempoten (idempotent law) A A = A, A A = A 7. Hukum ikatan (bound law) A S = S, A =
24
8. Hukum penyerapan (absorption law) A (A B) = A, A (A B) = A 9. Hukum involusi (involution law) A’’ = A 10. Hukum 0/1(1/0 law) ’ = S, S’ = 11. Hukum De Morgan untuk himpunan (De Morgan’s laws for sets) (A B)’ = A’ B’, (A B)’ = A’ B’
Presentasi serupa
© 2024 SlidePlayer.info Inc.
All rights reserved.