Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

STATISTIK 1 Pertemuan 11: Deret Berkala dan Peramalan (Analisis Trend)

Presentasi serupa


Presentasi berjudul: "STATISTIK 1 Pertemuan 11: Deret Berkala dan Peramalan (Analisis Trend)"— Transcript presentasi:

1 STATISTIK 1 Pertemuan 11: Deret Berkala dan Peramalan (Analisis Trend)
Dosen Pengampu MK: Evellin Lusiana, S.Si, M.Si

2 Materi Hari Ini Pendahuluan Metode analisis trend
Metode semi rata-rata Metode kuadrat terkecil Metode tren kuadratis Metode tren eksponensial

3 Pendahuluan [1] Deret berkala – Time series
Sekumpulan data yang dicatat dalam beberapa periode waktu Digunakan untuk meramalkan kondisi masa mendatang Dalam jangka pendek (kurang dari 1 tahun ) atau jangka panjang (lebih dari 3 tahun) Berguna untuk penyusunan recana (perusahaan dan negara)

4 Pendahuluan [2] Deret berkala mempunyai empat komponen :
Tren – kecenderungan (T) Variasi musim (S) Variasi siklus (C) Variasi yang tidak tetap – irregular variation (I) Deret Berkala Biasa Dinyatakan Y = T x S x C x I

5 Tren - Kecenderungan Tren
Merupakan suatu gerakan kecenderungan naik atau turun dalam jangka panjang yang diperoleh dari rata-rata perubahan dari waktu ke waktu dan nilainya cukup rata atau mulus Bentuk tren Tren positif = tren meningkat Y = a + b.X Tren negatif = tren menurun Y = a – b.X

6 Bentuk Tren Tren negatif Tren positif

7 Metode Analisa Tren Metode semi rata – rata ( Semi average method)
Metode kuadrat terkecil ( Least square method) Metode tren kuadratis ( Quadratic trend method) Metode tren eksponensial ( Exponential trend method)

8 Metode Semi Rata - rata Dengan cara mencari rata – rata kelompok data
Langkah : Kelompokan data menjadi dua kelompok Hitung rata – rata hitung dan letakkan di tengah kelompok ( K1 dan K2). Nilai yang dihasilkan menjadi nilai konstanta (a) dan letak tahun merupakan tahun dasar Hitung selisih K2 – K1 K2 – K1 > 0 = Tren positif K2 – K1 < 0 = Tren negatif

9 Tentukan nilai perubah tren (b) dengan cara :
Persamaan tren ; Y’ = a + bX Untuk mengetahui besarnya tren, masukan nilai (X) pada persamaan Untuk data ganjil, data (tahun) tengah dapat dihilangkan atau dihitung dua kali Y2 – Y1 th dasar 2 – th dasar 1

10 Contoh: Data Ganjil Tahun Penjualan 2000 150 2001 140 2002 125 2003
2000 150 2001 140 2002 125 2003 110 2004 130 2005 2006 156 2007 160 2008 168

11 Contoh: Data Ganjil Tahun Penjualan Rata 2 Nilai X tahun dasar 2002
2002 2006 2000 150 -2 -6 2001 140 -1 -5 125 131.0 -4 2003 110 1 -3 2004 130 2 2005 3 156 152.8 4 2007 160 5 2008 168 6 Untuk Nilai (a) 2002 = 131.0 2006 = 152.8 Untuk Nilai (b) = (152.8 – 131.0)/ (2006 – 2002) = 5.45

12 Maka persamaan tren Peramalan tahun 2009 Tahun dasar 2002
Y’ = X Tahun dasar 2006 Y’ = X Peramalan tahun 2009 Y’2002 = (7) = Y’ 2006= (3) =

13 Contoh: Data Genap Y’ 1997 = 4,93 + 0,58 X b = (6,67 – 4,93)/2000-1997
Tahun Pelanggan Rata-rata Nilai X th dasar 1997 th dasar 2000 1996 4,2 -1 -4 K1 1997 5,0 4,93 -3 1998 5,6 1 -2 1999 6,1 2 K2 2000 6,7 6,67 3 2001 7,2 4 Y’ 1997 = 4, ,58 X Y‘2000 = 6, ,58 X b = (6,67 – 4,93)/ b = 0,58

14 Metode Kuadrat Terkecil (OLS)
Dengan menentukan garis tren yang mempunyai jumlah terkecil dari kuadrat selisih data asli dengan data pada garis tren Persamaan ; Y’ = a + b.X Mencari nilai koefisien - utk tahun ganjil, koding X = , -2, -1, 0, 1, 2, 3, - utk tahun genap, koding X= , - 3, -1, 1 , 3, 5, atau X= , - 1.5, -0.5, 0.5 , 1.5, 2.5,

15 Contoh Kasus 1289 0 234 60 Persamaan tren Y’ = a + bX
Tahun Penjualan Kode X (tahun) XY 2000 150 -4 (-4x150)= -600 (-4)2=16 2001 140 -3 -420 9 2002 125 -2 -250 4 2003 110 -1 -110 1 2004 130 2005 2006 156 2 312 2007 160 3 480 2008 168 672 16 Total 1289   0 234 60 Persamaan tren Y’ = a + bX Y’ = X Peramalan tahun 2009 : X= 5 Maka : Y’ = (5) =162.72

16 Metode Tren Kuadratis Digunakan untuk tren jangka panjang yang polanya tidak linier Maka digunakan metode tren kuadratis, persamaan : Y ‘= a + b.X + c.X2 Nilai koefisien :

17 Metode Tren Kuadratis Nilai koefisien :

18 Contoh Kasus Tahun Penjualan Kode X XY X² X2Y X4 Y (tahun) 2000 150 -4
(tahun) 2000 150 -4 (-4x150)= (-4)2=16 (16x150)=2400 (-4)4=256 2001 140 -3 -420 9 1260 81 2002 125 -2 -250 4 500 16 2003 110 -1 -110 1 2004 130 2005 2006 156 2 312 624 2007 160 3 480 1440 2008 168 672 2688 256 Total 1289   234 60 9172 708

19 Persamaan tren kuadratis
Y’ = X X2 Jadi Peramalan penjualan untuk tahun (X = 5) adalah : Y’ = (5) (5)2 Y’=197.2

20 Metode tren eksponensial
Suatu tren yang mempunyai pangkat atau eksponen dari waktu Bentuk persamaan : Y’ = a(1 + b)x Koefisien :

21 Contoh kasus Tahun Penjualan Kode X X² ln Y X ln Y Y (tahun) 2000 150
ln Y X ln Y (tahun) 2000 150 -4 (-4)2=16 Ln(150)=5.01 (-4)*5.01=-20.04 2001 140 -3 9 4.94 -14.82 2002 125 -2 4 4.83 -9.66 2003 110 -1 1 4.70 -4.70 2004 130 4.87 0.00 2005 5.01 2006 156 2 5.05 10.10 2007 160 3 5.08 15.23 2008 168 16 5.12 20.50 Total 1289   60 44.61 1.61

22 Persamaan tren eksponensial
Y’ = a(1 + b)x Y’ = ( )x Peramalan penjualan tahun 2009 ( X =5 ), sebesar : Y’ = ( )5 Y’=

23 Memilih Persamaan Tren Terbaik
Dalam memilih metode tren yang terbaik dapat digunakan ukuran ketepatan Ukuran ketepatan adalah seberapa tepat sebuah alat peramalan tersebut menduga kejadian yang sebenarnya Kriteria yang digunakan yaitu ∑(Y – Y’)2 paling kecil atau SSE (Sum Square Error) terkecil

24 Memilih Tren yang baik Metode semi rata –rata ; Y‘ = 131 + 5.45 X
Tahun Penjualan Y X Y' Y - Y' (Y -Y')² 2000 150 -2 120 30 900.00 2001 140 -1 126 14 196.00 2002 125 131 -6 36.00 2003 110 1 136 -26 676.00 2004 130 2 142 -12 144.00 2005 3 147 9.00 2006 156 4 153 2007 160 5 158 4.00 2008 168 6 164 16.00 Total 1990

25 Memilih Tren yang baik Metode kuadrat terkecil ; Y’ = 143.22 + 3.9 X 0
Tahun X Y’ Y-Y’  (Y-Y’)2 2000 150 -4 127.62 22.38 500.86 2001 140 -3 131.52 8.48 71.91 2002 125 -2 135.42 -10.42 108.58 2003 110 -1 139.32 -29.32 859.66 2004 130 143.22 -13.22 174.77 2005 1 147.12 2.88 8.29 2006 156 2 151.02 4.98 24.80 2007 160 3 154.92 5.08 25.81 2008 168 4 158.82 9.18 84.27 Total 1289   0

26 Memilih Tren yang baik Metode kuadratis ; Y’ = 130.697 + 3.9X + 1.88X2
Tahun X Y’ Y-Y’  (Y-Y’)2 2000 150 -4 4.823 23.26 2001 140 -3 4.083 16.67 2002 125 -2 -5.417 29.34 2003 110 -1 348.83 2004 130 -0.697 0.49 2005 1 13.523 182.87 2006 156 2 9.983 99.66 2007 160 3 0.683 0.47 2008 168 4 -8.377 70.17 Total 1289   0 771.76

27 Memilih Tren yang baik Metode Eksponensial : Y’ = 142.12 (1 + 0.027)x
Tahun X Y’ Y-Y’  (Y-Y’)2 2000 150 -4 494.90 2001 140 -3 77.39 2002 125 -2 94.98 2003 110 -1 805.63 2004 130 -12.12 146.89 2005 1 16.34 2006 156 2 37.23 2007 160 3 36.66 2008 168 4 97.97 Total 1289   0

28 Memilih Tren yang baik Kesimpulan : Tren semi rata – rata : 1990.00
Tren Kuadrat terkecil : Tren kuadratis : Tren Eksponensial : Metode kuadratis yang lebih kecil, Jadi metode yang cocok untuk meramalkan penjualan adalah metode kuadratis

29 Latihan Diketahui rata2 pendapatan bulanan Toko A (jutaan rupiah) selama tahun Hitunglah ramalan/prediksi rata2 pendapatan bulanan Toko A di tahun 2017 mendatang dengan metode semi rata2 dan kuadrat terkecil Tahun Pendapatan (Y) 2012 10 2013 11 2014 15 2015 20

30 TUGAS KELOMPOK Cari data time series Lakukan analisis trend
Metode semi rata-rata Metode kuadrat terkecil Metode kuadratis Metode eksponensial Tentukan mana metode yang terbaik


Download ppt "STATISTIK 1 Pertemuan 11: Deret Berkala dan Peramalan (Analisis Trend)"

Presentasi serupa


Iklan oleh Google