Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

Review probabilitas (1)

Presentasi serupa


Presentasi berjudul: "Review probabilitas (1)"— Transcript presentasi:

1 Review probabilitas (1)
Tri Rahajoeningroem, MT T. Elektro - Unikom

2 Sample space, sample points, events
Sample space,, adalah sekumpulan semua sample points,, yang mungkin; dimana  Contoh 1. Melemparkan satu buah koin:={Gambar,Angka} Contoh 2. Menggelindingkan dadu: ={1,2,3,4,5,6} Contoh 3. Jumlah pelanggan dalam antrian: ={0,1,2,…} Contoh 4. Waktu pendudukan panggilan (call holding time): ={xx>0} Events A,B,C,…   adalah himpunan bagian dari sample space Contoh 1. Angka genap pada sebuah dadu:A={2,4,6} Contoh 2. Tidak ada pelanggan yang mengantri : A={0} Contoh 3. Call holding time lebih dari 3 menit. A={xx>3} Event yang pasti : sample space  Event yang tidak mungkin : himpunan kosong ()

3 Kombinasi event Union (gabungan) :“A atau B” : AB={A atau B}
Irisan: “A dan B” : AB={A dan B} Komplemen : “bukan A”:Ac={A} Event A dan B disebut tidak beririsan (disjoint) bila : AB= Sekumpulan event {B1,B2,…} merupakan partisi dari event A jika (i) Bi  Bj= untuk semua ij (ii) iBi =A

4 Probabilitas (peluang)
Back to Six Probabilitas (peluang) Probabilitas suatu event dinyatakan oleh P(A) P(A)[0,1] Sifat-sifat peluang

5 Conditional Probability (Peluang bersyarat)
Asumsikan bahwa P(B)>0 Definisi : Conditional probability dari suatu event A bila diketahui event B terjadi didefinisikan sebagai berikut Dengan demikian

6 Teorema Probabilitas Total
Bila {Bi} merupakan partisi dari sample space  Lalu {ABi} merupakan partisi dari event A, maka berdasarkan sifat probabilitas yang ketujuh pada slide nomor 4 Kemudian asumsikan bahwa P(Bi)>0 untuk semua i. Maka berdasarkan uraian pada slide nomor 5 dapat didefinisikan teorema probabilitas total sbb

7 Teorema Bayes Bila {Bi} merupakan partisi dari sample space 
Asumsikan bahwa P(A)>0 dan P(Bi)>0 untuk semua i. Maka berdasarkan uraian pada slide nomor 5 Kemudian, berdasarkan teorema probabilitas total, kita peroleh Ini merupakan teorema Bayes Peluang P(Bi) disebut peluang a priori dari event Bi Peluang P(BiA) disebut peluang a posteriori dari event Bi (bila diketahui event A terjadi)

8 Kesalingbebasan statistik dari event (Statistical independence of event)
Definisi : Event A dan B saling bebas (independent) jika Dengan demikian Demikian pula


Download ppt "Review probabilitas (1)"

Presentasi serupa


Iklan oleh Google