Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

Metode Newton-Raphson

Presentasi serupa


Presentasi berjudul: "Metode Newton-Raphson"— Transcript presentasi:

1 Metode Newton-Raphson
Metode ini paling banyak digunakan dalam mencari akar-akar dari suatu persamaan. Langkah-langkah yang dilakukan dalam penyelesaian persamaan dengan metode Newton-Raphson adalah sebagai berikut : Pilih nilai awal xi sembarang Hitung xi+1 dan f (xi+1) dengan rumus : Demikian seterusnya sampai didapatkan f (xi+1) yang kecil

2 Contoh : f(x) = x3 + x2 – 3 x – 3 = 0 dengan metode Newton Raphson
Selesaikan persamaan : f(x) = x3 + x2 – 3 x – 3 = 0 dengan metode Newton Raphson Penyelesaian : Persamaan yang diselesaikan : f (x) = x3 + x2 – 3 x – 3 = 0 Turunan pertama dari persamaan itu adalah : f ’(x) = 3x2 + 2 x – 3

3 Dengan menggunakan persamaan :
Pada awal hitungan ditentukan nilai xi sembarang, misalnya x1 = 1 ; f (x1) = f(1) = (1)3 + (1)2 – 3 (1) – 3 = –4 f ’(x1) = f’ (1) = 3(1)2 + 2 (1) – 3 = 2

4 Langkah berikutnya ditetapkan x2 = 3
f (x2) = f(3) = (3)3 + (3)2 – 3 (3) – 3 = 24 f ’(x2 ) = f’(3) = 3(3)2 + 2 (3) – 3 = 30

5 Hitungan dilanjutkan dengan prosedur yang sama dan hasilnya diberikan dalam tabel berikut ini :
Jumlah iterasi xi xi+1 f(xi) f(xi+1) 1 1,0 3,0 -4,0 24,0 2 2,2 5,888 3 1,83 0,987387 4 1,73778 0,05442 5 1,73207 0,

6 Metode Secant Kekurangan Metode Newton Raphson adalah diperlukannya turunan pertama (differensial) dari f(x) dalam hitungan. Kadang-kadang sulit untuk mendiferensialkan persamaan yang diselesaikan. Untuk itu maka bentuk diferensial didekati dengan nilai perkiraan berdasarkan diferensial beda hingga.

7 Yang disubstitusikan dalam persamaan :
Dalam metode ini pendekatan memerlukan dua nilai awal dari x

8 Contoh : Selesaikan persamaan : f(x) = x3 + x2 – 3 x – 3 = 0 dengan metode Secant Penyelesaian : Iterasi 1 Diambil dua nilai awal x1 =1 dan x2 = 2 Untuk x1 =1 maka f(x1) = f(1) = (1)3 + (1)2 – 3(1) – 3 = - 4 Untuk x2 =2 maka f(x2) = f(2) = (2)3 + (2)2 – 3(2) – 3 = 3 Dengan menggunakan persamaan :

9 Maka : f(x3)= (1,57142)3 + (1,57142)2 – 3(1,57142) – 3 = -1,36449 Iterasi 2 Untuk x2 =2 maka f(x2) = f(2) = (2)3 + (2)2 – 3(2) – 3 = 3 Untuk x3 =1,57142 maka Dengan menggunakan persamaan :

10 Hitungan dilanjutkan dengan prosedur yang sama dan hasilnya diberikan dalam tabel berikut :
Jumlah iterasi x1 x2 x3 f(x1) f(x2) f(x3) 1 1,0 2,0 1,57142 -4,0 3,0 -1,36449 2 1,70540 +3,0 -0,24784 3 1,73513 0,02920 4 1,73199 -0,000575 5 1,73205

11 Metode Iterasi Dalam metode iterasi ini digunakan suatu persamaan untuk memperkirakan nilai akar persamaan. Persamaan tersebut dikembangkan dari fungsi f(x) = 0 sehingga parameter x berada disisi kiri dari persamaan, yaitu : x= g(x) Persamaan ini menunjukkan bahwa nilai x merupakan fungsi dari x, sehingga dengan memberi nilai perkiraan awal dari akar dapat dihitung perkiraan baru dengan rumus iteratif berikut :

12 Besar kesalahan dihitung dengan rumus berikut :

13 Contoh : Selesaikan persamaan : f(x) = x3 + x2 – 3 x – 3 = 0
dengan metode Iterasi Penyelesaian : Persamaan tersebut dapat ditulis dalam bentuk : x3 = - x2 + 3 x + 3 → x = (- x2 + 3 x + 3 )1/3 Kemudian persamaan diubah menjadi : xi+1 = (- x2 + 3 x + 3 )1/3 Apabila ditentukan perkiraan awal x1 = 2 maka didapat : x2 = (- x x1+ 3 )1/3 = ( x )1/3 = 1,70998

14 Hitungan dilanjutkan dengan prosedur yang sama dan hasilnya diberikan dalam tabel berikut :
Iterasi (i) xi (%) 1 2,00000 2 1,70998 16,9607 3 1,73313 1,3362 4 1,73199 0,0658 5 1,73205 0,0034 6 0,0002 Dari tabel terlihat bahwa hasil hitungan pada iterasi yang lebih tinggi semakin dekat dengan akar persamaan yang benar, dengan kata lain kesalahan yang terjadi semakin kecil. Penyelesaian persamaan seperti ini disebut konvergen

15 Persamaaan x3 + x2 – 3 x – 3 = 0 dapat juga diubah dalam bentuk berikut :
Dalam bentuk iterasi persamaan diatas menjadi : Untuk perkiraan awal x1 = 2 maka didapat : Besar kesalahan :

16 Dengan prosedur yang sama hitungan dilanjutkan dan hasilnya diberikan dalam tabel berikut ini :
Iterasi (i) xi (%) 1 2,00000 2 3,00000 33,3333 3 11,00000 72,7273 4 483,00000 97,7226 5 ,0 99,9987 Tampak bahwa hasil hitungan pada iterasi yang lebih tinggi semakin menjauhi nilai akar persamaan yang benar. Keadaan hitungan seperti ini disebut divergen.

17 SOAL-SOAL LATIHAN Tentukan akar persamaan :
f(x) = -0.9 x x = 0 Dengan menggunakan rumus akar kuadrat (rumus abc) Dengan menggunakan metode Biseksi pada interval [2.8,3.0] sebanyak 3 iterasi dengan ketelitian hitungan hingga 3 angka di belakang koma. Dengan menggunakan metode regula falsi pada interval [2.8,3.0] sebanyak 3 iterasi dengan ketelitian hitungan hingga 3 angka dibelakang koma.

18 2. Tentukan akar dari persamaan : f(x) = -2 + 6.2x - 4 x2 + 0.7 x3 = 0
Dengan menggunakan metode Biseksi pada interval [0.4,0.6] sebanyak 3 iterasi dengan ketelitian hitungan hingga 3 angka dibelakang koma. Dengan menggunakan metode Regula Falsi pada interval [0.4,0.6] sebanyak 3 iterasi dengan ketelitian hitungan hingga 3 angka dibelakang koma.

19 3. Tentukan akar dari persamaan :
f(x) = x x x3= 0 Dengan menggunakan metode Newton Raphson dengan akar pendekatan awal adalah sebanyak 5 iterasi dengan ketelitian hitungan hingga 2 angka dibelakang koma. Dengan menggunakan metode Secant dengan akar pendekatan awalnya 0.9 dan sebanyak 5 iterasi dengan ketelitian hitungan hingga 2 angka dibelakang koma.

20 4. Tentukan akar dari persamaan : 1 – 0.61 x
f(x) = = 0 x Dengan menggunakan metode Newton Raphson dengan akar pendekatan awal adalah sebanyak 3 iterasi dengan ketelitian hitungan hingga 3 angka dibelakang koma. Dengan menggunakan metode Secant dengan akar pendekatan awalnya 1.5 dan sebanyak 3 iterasi dengan ketelitian hitungan hingga 3 angka dibelakang koma.

21 5. Tentukan akar dari persamaan :
f (x) = x3 - 6 x x – 5.9 = 0 Dengan menggunakan metode Biseksi pada interval [2.5,3.5] sebanyak 3 iterasi dengan ketelitian hitungan hingga 3 angka dibelakang koma. Dengan menggunakan metode Regula Falsi pada interval [2.5,3.5] sebanyak 3 iterasi dengan ketelitian hitungan hingga 3 angka dibelakang koma. Dengan menggunakan metode Newton Raphson dengan akar pendekatan awal 3.5 sebanyak 3 iterasi dengan ketelitian hitungan hingga 3 angka dibelakang koma. Dengan menggunakan metode Secant dengan akar pendekatan awal 2.5 dan 3.5 sebanyak 3 iterasi dengan ketelitian hitungan hingga 3 angka dibelakang koma.

22 6.Tentukan akar dari persamaan-persamaan berikut dengan metode Iterasi, masing- masing 6 iterasi dengan ketelitian hitungan hingga 4 angka dibelakang koma: f(x) = sin x – 5x = 0, dengan akar pendekatan awal 0.1 f(x) = x2 + 4 x – 3 , dengan akar pendekatan awal 0.65


Download ppt "Metode Newton-Raphson"

Presentasi serupa


Iklan oleh Google