Upload presentasi
Presentasi sedang didownload. Silahkan tunggu
Diterbitkan olehSurya Oesman Telah diubah "6 tahun yang lalu
1
Kaidah Pencacahan ~ Aturan pengisian tempat yang tersedia
Contoh: Pada lomba lari 100 meter, empat anak lolos ke putaran akhir, yaitu A(Adi), B(Banu), C (Candra), dan D(Dodi). Pada perlombaan tersebut disediakan dua hadiah. Ada berapakah susunan pemenang yang mungkin muncul pada akhir pertandingan?
2
AB, AC, AD,BA,BC,BD,CA,CB,CD,DA,DB,dan DC.
jawab Pemenang pertama dan kedua yang mungkin muncul, dapat kita susun yaitu: AB, AC, AD,BA,BC,BD,CA,CB,CD,DA,DB,dan DC. Proses menentukan banyaknya susunan pemenang secara umum mengikuti aturan sebagai berikut: Langkah 1: Ada 4 peserta lomba yang semuanya bisa keluar sebagai juara pertama. Langkah 2: Satu orang sudah masuk garis akhir, masih ada 3 peserta lomba yang bisa menduduki juara kedua. Jadi seluruhnya ada 4 x 3 = 12 (susunan pemenang yang mungkin terjadi)
3
Contoh 2 Amalia memiliki 4 buah kemeja, 2 buah celana panjang dan 3 sepatu. Ada berpa cara ia dapat berpakaian lengkap? Jawab: Kemeja yang dapat dipilih Amalia ada 4 cara, celana panjang 2 cara dan sepatu 3 cara. Jadi, ada 4 x 2 x 3 = 24 cara amelia dapat berpakain lengkap
4
Dari uraian tersebut dapat kita peroleh suatu kesimpulan :
Jika terdapat buah tempat yang tersedia dengan: n1 = banyaknya cara untuk mengisi tempat pertama. n2 = banyaknya cara mengisi tempat kedua, setelah tempat pertama terisi. n3 = banyaknya cara mengisi tempat ketiga, setelah tempat pertama dan kedua terisi, dan nk = banyaknya cara mengisi tempat ke – k, setelah tempat- tempat sebelumnya terisi. Maka banyaknya cara untuk mengisi k tempat yang tersedia adalah Aturan ini yang dimaksud sebagai aturan pengisian tempat yang tersedia atau kaidah perkalian. n1 x n2 x n3 x … x nk.
5
Definisi dan Notasi faktorial
Hasil perkalian semua bilangan bulat positip dari satu sampai dengan n disebut n faktorial, dan diberi notasi n!. jd n! = 1 x 2x 3 x … x (n-1) x n, atau n! = n x ( n-1) x (n-2) x … x 2 x 1 dengan ! = 1 dan 0! = 1
6
Permutasi Misalkan diadakan undian untuk memperebutkan 2 hadiah (hadiah I dan II). Jika yang memperebutkan hadiah itu ada 3 orang (A, B, dan C), ada berapa cara kedua macam hadiah itu dapat diberikan kepada para pemenang?. Jawab: Obyek Eksp. A B C Cara Eksp. Diundi untuk memperebutkan 2 hadiah (B,A) = permutasi ke-3 = p3 (A,B) = permutasi ke-1 = p1 (A,C) = permutasi ke-2 = p2 (C,A) = permutasi ke-5 = p5 (C,B) = permutasi ke-6 = p6 (B,C) = permutasi ke-4 = p4 ... S, n(S) = 3 cara 2 cara Menurut Prinsip Perkalian Banyaknya cara: n(S) = = 3×2 = 6 = = = 3×2 =
7
Permutasi Dengan Beberapa Unsur Sama
Ada berapa cara untuk membuat susunan huruf yang berbeda dari kata “MAMA”?. Jawab MMAA MAMA AMMA AMAM AAMM MAAM Ada 6 cara 6 = = = =
8
Permutasi Dengan Beberapa Unsur Sama
Berapa banyak cara untuk membuat susunan huruf dari kata “KAKAKKU”? Jawab = Karena ada 4K, 2A, dan 1U, maka banyaknya cara = = 105 cara .Banyaknya cara mengambil 2 huruf A dari (7 – 4) huruf sisanya ada , dan banyaknya cara mengambil 1 huruf A dari (7 – 4 – 2) huruf sisanya ada Maka menurut prinsip perkalian banyaknya cara untuk membuat susunan huruf dari kata KAKAKKU ada: Secara matematika formal, banyaknya cara mengambil 4 huruf K dari 7 huruf ada = × = n1 = + n2 nk n Secara umum, dengan
9
Permutasi Siklis Misalkan 3 orang anak A, B, dan C diminta naik ke permainan roda putar A C B Secara umum banyaknya permutasi siklis dari n obyek = Maka berarti ketiga permutasi siklis tersebut sama, yakni ABC = CAB = BCA. Untuk melihat kesamaannya perhatikan bahwa: CAB.CAB = BCA.BCA = ABC (Pandanglah A sebagai titik awal). Dari 3 tempat duduk pada permainan roda putar itu sebenarnya hanya ada 2 saja yang berbeda susunannya, yakni ABC dan ACB. Sehingga hanya ada 2 permutasi siklis. Secara umum banyaknya permutasi siklis dari n obyek = = (n – 1)!
10
Permutasi berulang Jika kita inin menyusun kata yang terdiri 2 huruf, yang dipilih dari huruf A, D, I, serta kata yang terbentuk boleh mengandung huruf yang sama, maka kita akan mendapatkan kata: AA, AD, AI, DD, DA, DI, II, IA, ID. Jadi, banyaknya permutasi dua huruf yang diambil dari 3 huruf dengan huruf- huruf itu boleh berulang ada 9 cara. Secara umum: Banyaknya permutasi r unsur yang diambil dari n unsur yang tersedia (dengan tiap unsur yang tersedia boleh ditulis berulang) adalah sebagai berikut: P (berulang) =nr dengan r < n
11
Kombinasi No Obyek Eksp. Cara Eksp. Kemungkinan yang dapat hadir 1
O = {A,B,C,D} Diundang 2 orang wakilnya untuk rapat keluarga AB = c1 AC = c2 AD = c3 BC = c4 BD = c5 CD = c6 2 Diundang 3 orang wakilnya untuk rapat keluarga ABC = c1 ABD = c2 ACD = c3 BCD = c4
12
Jika elemen-elemen kombinasi itu dipermutasikan
6 × 2! Total = = 12 = 6 × 2 = 6 2! AB dan BA AC dan CA AD dan DA BC dan CB BD dan DB CD dan DC c1 = AB c2 = AC c3 = AD c4 = BC c5 = BD c6 = CD Banyaknya Permutasi Jika elemen-elemen kombinasi itu dipermutasikan Macam Kombinasi Perhatikan bahwa 12 = 6 x 2! = x 2!
13
Kombinasi k Unsur dari n Unsur dengan beberapa unsur sama
Misal 4 bola akan yang diambil dari dalam kotak berisi 4 bola merah, 3 bolaputih dan 2 bola hijau.Empat bola yang diambil harus terdiri dari 2 bola merah, 1 bola putih dan 1 bola hijau. Cara pengambilan ini merupakan masalah kombinasi k unsur dari n unsur dengan beberapa unsur yang sama. Sehingga total cara pemilihan 4 bola dari 9 bola adalah 4 C C C 1 cara.
14
Misal terdapat n unsur yang terdiri dari q1, q2, q3, …, qn
Unsur q1 ada sebanyak n1, unsur q2 ada sebanyak n2, unsur q3 ada sebanyak n3, …, unsur qe ada sebanyak ne, sehingga n1 + n2 + n3 + …+ ne = n. Dari n unsur tersebut akan diambil k unsur yang terdiri dari k1 unsur q1, k2 unsur q2, k3 unsur q3, …, ke unsur qe dengan k1 + k2 + k3 + … + ke = k. Banyak cara pengambilan adalah: n1 C k1 . n2 C k2 . n3 C k3 …. . ne C ke
15
Peluang Kejadian Percobaan, Ruang Sampel, Peluang suatu kejadian
Peluang adalah nilai frekuensi relatif munculnya suatu peristiwa dalam suatu eksperimen jika banyaknya percobaan tak terhingga. P(A)= Kombinatorik Adalah teknik menghitung banyaknya anggota ruang sampel dengan : Cara mendatar Membuat tabel Membuat diagram pohon
16
Eksperimen (Percobaan Acak)
Ada Obyek Eksperimen Ada Cara Eksperimen Ada Hasil-hasil Yang Mungkin (Titik-titik Sampel) Obyek Eksp. Cara Eksp. Hasil-hasil Yang Mungkin s1 s2 s3 s4 s5 S S = Ruang Sampel = { s1 , s2 , s3 , , s5 } = Himpunan semua hasil yang mungkin dalam eksperimen itu s1 , s2 , s3 , , s5 masing-masing disebut titik sampel s2 S s1 s3 s4 s5
17
= Himpunan semua hasil yang mungkin terjadi dalam eksperimen itu
sn S A s3 s2 s1 sm S = Ruang Sampel = Himpunan semua hasil yang mungkin terjadi dalam eksperimen itu = {s1 , s2 , s3 , , sm , , sn} A = Suatu peristiwa dalam ruang sampel S = {s1 , s2 , s3 , , sm} Prinsip Penjumlahan P(A) = P({s1}) + P({s2}) + P({s3}) P({sm}) = jumlah peluang masing-masing titik sampel yang ada di dalamnya
18
Peluang Berdasar Pengambilan Sampel
Pengambilan Sekaligus → Kombinasi Pengulangan obyek eksp. tidak dimungkinkan dan urutan tak diperhatikan (tak punya makna) Pengambilan Satu Demi Satu 1. Tanpa Pengembalian → Permutasi Pengulangan obyek eksp. tidak dimungkinkan dan urutan diperhatikan (punya makna) 2. Dengan Pengembalian → Bukan Permutasi dan Bukan Kombinasi
19
1. Pengambilan Sekaligus
Hasil-hasil yang mungkin Obyek Eksp Cara Ekp. 1 2 3 Eksp1: ambil acak 2 bola sekaligus … s1 … s2 … s3 S A Ambil acak 2 bola sekaligus. Hasil-hasil yang mungkin? Banyaknya Eksp. Frek. Munculnya s1 = s2 s3 300 kali 3.000 kali kali kali banyak kali 92 1.012 4.989 10.012 Fr (s1) ≈ 105 991 5.007 9.984 Fr (s2) ≈ 93 997 5.004 10.004 Fr (s3) ≈ S = {s1, s2 , s3 } = Ruang sampel hasil eksperimen A = Peristiwa terambilnya jumlah kedua nomor bola ganjil = {s1, s3 } , n(A) = 2. A S s2 s1 s3 n(S) = = 3 . P({s1}) = P({s2}) = P({s3}) = Maka S berdistribusi seragam P(A) =
20
2. Pengambilan Satu demi Satu Tanpa Pengembalian
Obyek Eksp Cara Ekp. 1 2 3 Eksp 2 : ambil acak 2 bola 1 – 1 tanpa pengembalian Ambil acak 2 bola 1 – 1 tanpa pengemb. Hasil-hasil yang mungkin? … s1 … … s2 … s3 … s4 … s5 … s6 S A 3 cara 2 cara Hasil-hasil yang mungkin S = {s1, s2 , s3 , ,s6 } = Ruang sampel hasil eksperimen A = peristiwa terambilnya jumlah kedua nomor bola ganjil = {s1, s3, s4 , s6 } P(A) = = = n(S) = = 3 × 2 6. A S s6 s5 s4 s2 s1 s3 P({s1}) = P({s2}) = … = P({s6}) = Maka S berdistribusi seragam.
21
3. Pengambilan 1 – 1 Dengan Pengembalian
Eksp2:ambil acak 2 bola 1-1 dengan pengemb. Ambil acak 2 bola 1-1 dengan pengembalian. Hasil-hasil yang mungkin? I Hasil-hasil yang mungkin S II A 2 3 1 … s1 … … s2 … s3 … s7 … s8 … s9 3 cara A S s7 s2 s6 s3 s4 s8 s1 s5 s9 S = {s1, s2 , s3, ... , s9} = Ruang sampel hasil eksperimen. n(S) = 3 × 3 = 9 A = peristiwa terambilnya jumlah kedua nomor bola ganjil. = {s2, s4, s6 , s8 } P(A) = = P({s1}) = P({s2}) = … = P({s9}) = Maka S berdistribusi seragam.
22
Frekuensi Harapan Frekuensi Harapan suatu kejadian adalah hasil kali peluang kejadian tersebut dengan banyaknya percobaan. Fr(A) = P(A) . n dengan, Fr(A) = frekuensi harapan kejadian A P (A) = peluang kejadian A n = banyaknya percobaan Contoh: Peluang seorang anak terkena penyakit polio adalah 0,01, dari 8000 anak. Berapa kira- kira yang terjangkit penyakit polio? Jawab: P(kenapolio) = 0,01, n= 8000 Fr(A) = P(kena polio) . n = 0,01 x 8000 = 80 Jadi, dari 8000 anak diperkirakan ada 80 anak yang terkena penyakit polio
23
1. Komplemen Kejadian bukan A dari himpunan S ditulis dengan simbol A’ (atau Ac) disebut komplemen dari A. A’ S A Jika A mempunyai a elemen, dan S mempunyai n elemen maka A’ mempunyai n-a elemen. Maka P(A’) adalah peluang tidak terjadinya A.
24
2.Dua Kejadian Saling Lepas
A .7 B .6 .8 .9 S S={1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} A={kejadian mendapatkan bilangan prima} B={kejadian mendapatkan sedikitnya bilangan 5} Maka A = {2, 3, 5, 7, 11} dan B = {5, 6, 7, 8, 9, 10, 11, 12} Sehingga Jika kita melihat hubungan antara , P(A) dan P(B), terdapat irisan antara A dan B, yaitu {5, 7, 11} dan juga diperoleh
25
Jika A dan B kejadian yang saling lepas maka
Jika suatu kejadian A dan B tidak bersekutu, dalam hal ini =Ø, maka kita katakan dua kejadian tersebut adalah saling lepas. Untuk kejadian saling lepas (saling asing) Maka = P(Ø) = 0 Jika A dan B kejadian yang saling lepas maka
26
Contoh Soal : Sebuah dadu dilemparkan satu kali, Jika A = {kejadian muncul mata dadu lebih dari 2}, tentukan P(A’) ? Jawab : Sebuah dadu dilemparkan satu kali, maka ruang sampelnya adalah: S = {1, 2, 3, 4, 5, 6} Jika A = {kejadian muncul mata dadu lebih dari 2} = {3, 4, 5, 6} Maka P(A) = 4/6 = 2/ P(A’) = 1 – 4/6 = 2/6 = 1/3 2. Pada pengambilan 1 kartu secara acak dari 1 set kartu bridge, berapa peluang mendapatkan kartu As atau King?
27
Dua Kejadian Saling Bebas
Sekeping uang logam dan sebuah dadu dilempar sekali. Kejadian munculnya sisi angka pada uang logam dan kejadian munculnya mata 3 pada dadu adalah dua kejadian yang tidak saling mempengaruhi. Peluang dua kejadian A dan B yang yang saling bebas adalah: P (A B) = P (A) . P(B) Contoh : Misal A = kejadian muncul mata dadu 3 pada pelemparan pertama, maka : n(A) = 1, sehingga P(A) = Misal B = kejadian muncul mata dadu 5 pada pelemparan kedua, maka: n(B) = 1, sehingga P(B) = Peluang A dan B: P( A B) = P(A) . P(B) =
28
Rangkuman 1. Peluang tidak terjadinya A atau P(A’) adalah P(A’) = 1 – P(A) 2. Jika A dan B kejadian yang saling lepas maka 3. Jika A dan B kejadian yang saling bebas maka
29
SEKIAN TERIMA KASIH SAMPAI JUMPA LAGI
Presentasi serupa
© 2024 SlidePlayer.info Inc.
All rights reserved.