Upload presentasi
Presentasi sedang didownload. Silahkan tunggu
Diterbitkan olehShinta Sudirman Telah diubah "6 tahun yang lalu
1
Fungsi transfer untuk sistem umpan-balik umum
Pendahuluan Pada bagian sebelumnya, telah dibahas cara menghitung respon transien pada sistem order-satu dan dua, berdasarkan fungsi transfer mereka. Hal ini selanjutnya akan digunakan untuk sistem kontrol umpan balik. Rincian pembahasan adalah : Fungsi transfer untuk sistem umpan-balik umum Sistem umpan-balik unity-gain, yang disebut bentuk kanonik Efek penguatan terhadap respon sistem dengan bentuk fungsi transfer yang sama seperti sistem kontrol posisi azimuth antena. Memperkenalkan root locus Bagian 10
2
Gambar 1. Bentuk umpan balik pada topologi sistem kontrol
5 Analisis dan Disain Sistem Umpan-Balik Umpan balik (feedback) membentuk topologi sistem kontrol seperti ditunjukkan oleh gambar 1, yang kemudian disederhanakan menjadi gambar 2 Gambar 1. Bentuk umpan balik pada topologi sistem kontrol Bagian 10
3
Gambar 2.Topologi sistem kontrol umpan balik yang disederhanakan
Untuk sistem yang disederhanakan Gambar 2.Topologi sistem kontrol umpan balik yang disederhanakan Bagian 10
4
Gambar 3. Sistem kontrol umpan balik tereduksi
Gambar 3 berikut adalah diagram blok sistem konrol "closed loop" tereduksi. Gambar 3. Sistem kontrol umpan balik tereduksi 5.1 Interpretasi fungsi transfer closed-loop tergeneralisasi Komponen persamaan (1) diinterpretasikan sebagai berikut : Fungsi transfer G(s)H(s) dinamakan "fungsi transfer loop" 1 + G(s)H(s) = 0 dinamakan "persamaan karakteristik closed-loop" / "closed loop characteristic equation" (CLCE) Gc(s) dinamakan "fungsi transfer closed-loop" Bagian 10
5
Gambar 4. Bentuk kanonik umpan balik unity-gain
Bentuk kanonik dari "umpan balik unity-gain" ditunjukkan oleh gambar 4. Gambar 4. Bentuk kanonik umpan balik unity-gain Go(s) dinamakan "fungsi transfer open-loop". Bandingkan dengan model terdahulu, H(s) =1, sehingga dari persamaan (1) diperoleh : Bagian 10
6
5.3 Kinerja transien closed-loop
Gambar 5 berikut menunjukkan contoh mekanisme servo Untuk sistem di samping ini : Gambar 5 Terlihat bahwa fungsi transfer order-dua, yang dapat memiliki beberapa bentuk peredaman, bergantung pada nilai K. Jika K berubah, pole closed-loop bergerak menuju tiga bentuk perilaku, dari respon overdamped, ke critically-damped, hingga underdamped Pada K = 0, pole-pole akan sama seperti open-loop, yaitu p1,2 = 0,-a (ditandai dengan s1 pada gambar 6) Bagian 10
7
Lokasi pole untuk sistem contoh
Untuk 0 < K < a2/4, pole-pole terletak pada (ditandai dengan s2 pada gambar 6) Jika K naik, pole bergerak saling men- dekati di sepanjang sumbu-real dan responnya adalah overdamped (meskipun rise- dan settling-time ber- kurang), hingga kedua pole sampai pada p1,,2 = -a/2, ketika K = a2/4 dan responnya adalah critically-damped (s3 pada gambar 6) Gambar 6 Lokasi pole untuk sistem contoh Bagian 10
8
Hasil-hasil ini terangkum pada tabel berikut ini.
Jika K terus naik, pole menjadi bilangan kompleks, dengan bagian real d = -a/2 dan bagian imajiner : yang akan meningkat dari sisi ukuran, pada saat K naik (s4 pada gambar 6). Bagian real akan bernilai konstan sementara rasio peredaman berkurang. Jadi, %OS akan meningkat sementara nilai settling-time tidak mengalami perubahan. Hasil-hasil ini terangkum pada tabel berikut ini. Bagian 10
9
Contoh 5.1 Hitung Tp, %OS dan Ts untuk sistem kontrol umpan-balik pada gambar berikut ini Jawab : Jadi dan = 0.5. Sehingga detik detik Bagian 10
10
Untuk overshoot sebesar 10%,
Contoh 5.2 Untuk sistem pada gambar di bawah ini, tentukan gain K yang diperlukan untuk menghasilkan %OS sebesar 10%. Catatan : Untuk sistem ini, settling-time adalah Ts = 4/() = 4/(2.5) = 1.6 detik. Sistem dengan settling-time yang lebih kecil tidak dapat didisain, karena bagian real dari pole bernilai tetap dan tidak dapat diatur melalui gain K. Diperlukan komponen tambahan untuk memperoleh settling-time kurang dari 2 detik Jawab : 2n = 5, n = K1/2 , sehingga Untuk overshoot sebesar 10%, Bagian 10
11
Gerakan pole closed-loop pada sistem kontrol dengan fungsi transfer :
5.4 Root-Locus Kembali pada sistem di gambar 5. Sistem tersebut memiliki fungsi transfer closed-loop : Pada gambar 9 di bawah ini, diperlihatkan hasil plot dua "kurva" kontinu melalui pole-pole untuk menunjukkan gerakan pole yang merupakan fungsi kontinu dari K Gambar 9 Gerakan pole closed-loop pada sistem kontrol dengan fungsi transfer : Go(s) = K / (s(s + a)) Bagian 10
12
>> Go = tf([1],[1. 5. 0]) % Go(s) = 1/(s^2 + 5s) !
Kurva-kurva ini menggambarkan "locus" dari pole-pole closed-loop pada saat K mengalami kenaikan. "Root Locus" ini dapat dibuat untuk semua sistem yang fungsi transfer open-loop-nya diketahui. Pembuatan root locus dengan menggunakan Matlab untuk sistem yang memiliki fungsi transfer Go(s) = 1/s(s + 5) dan umpan balik unity-gain adalah sbb. : >> Go = tf([1],[ ]) % Go(s) = 1/(s^2 + 5s) ! >> rlocus(Go) Gambar 10 Hasil eksekusi pada Matlab Bagian 10
Presentasi serupa
© 2024 SlidePlayer.info Inc.
All rights reserved.