Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

Pertemuan 1 Logika.

Presentasi serupa


Presentasi berjudul: "Pertemuan 1 Logika."— Transcript presentasi:

1 Pertemuan 1 Logika

2 Pengetahuan Pengetahuan adalah fakta yang timbul karena keadaan (Sutojo, 2011) Contoh : Pengetahuan tentang penyakit , gejala-gejala dan pengobatannya. Pengetahuan tentang tanaman, jenis-jenis dan cara hidupnya

3 Representasi Pengetahuan
Cara untuk menyajikan pengetahuan yg diperoleh ke dalam suatu skema/diagram tertentu sehingga dapat diketahui relasi antara suatu pengetahuan dengan pengetahuan yg lain dan dapat dipakai utk menguji kebenaran penalarannya.

4 Representasi Logika Logika adalah ilmu untuk berfikir dan menalar dgn benar sehingga dapat dihasilkan kesimpulan. Tujuan : memberikan aturan penalaran sehingga orang dpt menentukan apakah suatu kalimat bernilai benar atau salah tetapi tidak keduanya.

5 Representasi Logika Logika proposisi (propositional logic)
Logika predikat (predicate logic)

6 1. Logika proposisi (propositional logic)
Proposisi (pernyataan) adalah suatu kalimat deklaratif yg bernilai benar atau salah saja, tetapi tidak keduanya.

7 “Gajah lebih besar daripada tikus.”
Permainan “Gajah lebih besar daripada tikus.” Apakah ini sebuah pernyataan? YA Apakah ini sebuah proposisi? YA Apakah nilai kebenaran dari proposisi ini? BENAR

8 Permainan Apakah ini sebuah pernyataan? YA
“520 < 111” Apakah ini sebuah pernyataan? YA Apakah ini sebuah proposisi? YA Apakah nilai kebenaran dari proposisi ini? SALAH

9 Permainan Apakah ini sebuah pernyataan? YA
Apakah ini sebuah proposisi? TIDAK Nilai kebenaran dari pernyataan tersebut bergantung pada y, tapi nilainya belum ditentukan. Pernyataan jenis ini kita sebut sebagai fungsi proposisi atau kalimat terbuka.

10 “Tolong untuk tidak tidur selama kuliah”
Permainan “Tolong untuk tidak tidur selama kuliah” Apakah ini sebuah pernyataan? TIDAK Ini adalah sebuah permintaan. Apakah ini sebuah proposisi? TIDAK Hanya pernyataanlah yang bisa menjadi proposisi.

11 “x < y jika dan hanya jika y > x.”
Permainan “x < y jika dan hanya jika y > x.” Apakah ini pernyataan ? YA Apakah ini proposisi ? YA … karena nilai kebenarannya tidak bergantung harga spesifik x maupun y. Apakah nilai kebenaran dari proposisi ini ? BENAR

12 LAMBANG-LAMBANG PROPOSIONAL LOGIC
1. Lambang pernyataan proposisional p,q,r,s,t,... (disebut sebagai atom-atom) 2. Lambang kebenaran Benar (True) , salah (False) 3. Lambang penghubung  (konjungsi),  (disjungsi),  (negasi),  (implikasi),  (Bi-implikasi),  (equivalen)

13 Logika proposisi (propositional logic)
Beberapa operator penghubung dasar yang seringkali dipakai dalam propositional logic ditunjukkan dalam Tabel 2.1 sedangkan tabel kebenaran untuk masing-masing operator dapat dilihat pada Tabel 2.2.

14 Logika proposisi (propositional logic)
Misalnya, seseorang sedang memegang dua buah benda, buku dan pensil. Lalu orang tersebut mengatakan: "saya sedang memegang buku dan pensil". Maka kita tahu bahwa peryataan tersebut adalah BENAR (TRUE).

15 Logika proposisi (propositional logic)
Jika kemudian orang tersebut mengatakan: "saya sedang memegang buku dan spidol", maka kita tahu bahwa pernyataan tersebut SALAH (FALSE). Tetapi jika ia mengubah pernyataan menjadi: "saya sedang memegang buku atau spidol", maka pernyataan tersebut adalah BENAR (TRUE).

16 Contoh 3. Diketahui proposisi-proposisi berikut:
p : Hari ini hujan q : Murid-murid diliburkan dari sekolah p  q : Hari ini hujan dan murid-murid diliburkan dari sekolah p  q : Hari ini hujan atau murid-murid diliburkan dari sekolah p : Tidak benar hari ini hujan (atau: Hari ini tidak hujan) 

17

18 Suatu kalimat (formula) P dianggap equivalen dengan formula Q jika dan hanya jika ‘truth value’ dari P sama dengan ‘truth value’ dari G untuk setiap interpretasinya. (ditulis sbg. P  Q)

19 HUKUM PROPOSISIONAL P, Q,DAN R
1.Hukum de Morgan : (PQ)  (PQ) 2.Hukum de Morgan : (PQ)  (PQ) 3.Hukum distributif : P(QR)  (PQ)  (PR) P(QR)  (PQ) (PR) 4.Hukum komutatif : (PQ)  (QP) (PQ)  (QP) 5.Hukum asosiatif : ((PQ) R)  (P (QR)) ((PQ) R)  (P (QR)) 6.Hukum kontrapositif : (PQ)  (Q P)

20 Wassalamualaikum Wr. Wb.


Download ppt "Pertemuan 1 Logika."

Presentasi serupa


Iklan oleh Google