Upload presentasi
Presentasi sedang didownload. Silahkan tunggu
1
Translasi (Pergeseran)
MENU UTAMA Transformasi 02 Pendahuluan Tujuan Pembelajaran Jenis Transformasi Translasi (Pergeseran) Rotasi (Perputaran) Dilatasi (Perkalian) Transformasi Invers Penutup
2
Nama : Hendrik Pical TTL : Banjar Masin, Pendidikan : S1 Prodi : Matematika Hobi : Menulis Alamat Web : Blokmatek.wordpress.com No.HP : Alamat School : SMA Kristen Kalam Kudus Jayapura Jl.Ardipura I No. 50. Telepon Jayapura Papua
4
Kami mohon Donasi dari saudara-saudara sekalian agar blog ini tetap
MGMP MATEMATIKA SD SMP SMA SKKK JAYAPURA Kami mohon Donasi dari saudara-saudara sekalian agar blog ini tetap Eksis untuk membantu saudara-saudara sekalian agar dapat mengakses materi bahan ajar atau soal-soal dan lainnya dalam bentuk “POWERPOINT” silahkan salurkan lewat rekening Bank MANDIRI atas nama HENDRIK PICAL,A.Md,S.Sos dengan No. ac Bank dan konvirmasi lewat No. HP Terima Kasih.
5
Transformasi Translasi Rotasi Dilatasi
6
tayangan ini peserta didik dapat
TUJUAN PEMBELAJARAN Setelah menyaksikan tayangan ini peserta didik dapat Menentukan peta atau bayangan suatu kurva hasil dari suatu Translasi, Rotasi atau Dilatasi
7
Jenis-jenis Transformasi
a. Tranlasi*) b. Rotasi*) c. Dilatasi*) *) yang dibahas kali ini
8
Translasi (Pergeseran)
Tranlasi artinya pergeseran
9
Jika translasi T = memetakan titik P(x,y) ke P´(x’,y’) maka x’ = x + a dan y’ = y + b ditulis dalam bentuk matriks:
10
Contoh 1 Diketahui segitiga OAB dengan
koordinat titik O(0,0), A(3,0) dan B(3,5).Tentukan koordinat bayangan segitiga OAB tersebut bila ditranslasi oleh T =
11
Bahasan (0,0) → (0 + 1, 0 + 3) y 0’(1,3) (3,0) → (3 + 1, 0 + 3)
(0,0) → (0 + 1, 0 + 3) 0’(1,3) (3,0) → (3 + 1, 0 + 3) A’(4,3) (3,5) → (3 + 1, 5 + 3) B’(4,8) y X O
12
Bayangan persamaan lingkaran
Contoh 2 Bayangan persamaan lingkaran x2 + y2 = 25 oleh translasi T = adalah….
13
Bahasan P (-1,3) ● ● X
14
Karena translasi T = maka
x’ = x – 1 → x = x’ + 1.….(1) y’ = y + 3 → y = y’ – 3…..(2) dan (2) di substitusi ke x2 + y2 = 25 diperoleh (x’ + 1)2 + (y’ – 3)2 = 25; Jadi bayangannya adalah: (x + 1)2 + (y – 3)2 = 25
15
Contoh 3 Oleh suatu translasi, peta titik (1,-5)
adalah (7,-8). Bayangan kurva y = x2 + 4x – 12 oleh translasi tersebut adalah….
16
Bahasan Misalkan translasi tersebut T =
Bayangan titik (1,-5) oleh translasi T adalah (1 + a, -5 + b) = (7,-8) 1+ a = 7 → a = 6 -5+ b = -8 → b = -3
17
a = 6 dan b = -3 sehingga translasi tersebut adalah T = Karena T = Maka x’ = x + 6 → x = x’ – 6 y’ = y – 3 → y = y’ + 3
18
x = x’ – 6 dan y = y’ + 3 disubstitusi
ke y = x2 + 4x – 12 y’ + 3 = (x’ – 6)2 + 4(x’ – 6) – 12 y’ + 3 = (x’)2 – 12x’ x’ y’ = (x’)2 – 8x’ – 3 Jadi bayangannya: y = x2 – 8x – 3
19
pusat dan besar sudut putar
ROTASI (Perputaran) Rotasi artinya perputaran ditentukan oleh pusat dan besar sudut putar Lancip Sudut Putar Siku-siku Pusat Rotasi Lurus Tumpul
20
Titik P(x,y) dirotasi sebesar berlawanan arah jarum jam
Rotasi Pusat O(0,0) Titik P(x,y) dirotasi sebesar berlawanan arah jarum jam dengan pusat O(0,0) dan diperoleh bayangan P’(x’,y’) maka: x’ = xcos - ysin y’ = xsin + ycos
21
(rotasinya dilambangkan dengan R½π)
Jika sudut putar = ½π (rotasinya dilambangkan dengan R½π) maka x’ = - y dan y’ = x dalam bentuk matriks: Jadi R½π =
22
Persamaan bayangan garis x + y = 6 setelah dirotasikan
Contoh 1 Persamaan bayangan garis x + y = 6 setelah dirotasikan pada pangkal koordinat dengan sudut putaran +90o, adalah….
23
Jadi bayangannya: x – y = -6
Pembahasan R+90o berarti: x’ = -y → y = -x’ y’ = x → x = y’ disubstitusi ke: x + y = 6 y’ + (-x’) = 6 y’ – x’ = 6 → x’ – y’ = -6 Jadi bayangannya: x – y = -6
24
Persamaan bayangan garis 2x - y + 6 = 0 setelah dirotasikan
Contoh 2 Persamaan bayangan garis 2x - y + 6 = 0 setelah dirotasikan pada pangkal koordinat dengan sudut putaran -90o , adalah….
25
Pembahasan R-90o berarti: x’ = xcos(-90) – ysin(-90) y’ = xsin(-90) + ycos(-90) x’ = 0 – y(-1) = y y’ = x(-1) + 0 = -x’ atau dengan matriks:
26
R-90o berarti: x’ = y → y = x’ y’ = -x → x = -y’
disubstitusi ke: 2x - y + 6 = 0 2(-y’) - x’ + 6 = 0 -2y’ – x’ + 6 = 0 x’ + 2y’ – 6 = 0 Jadi bayangannya: x + 2y – 6 = 0
27
(rotasinya dilambangkan dengan H)
Jika sudut putar = π (rotasinya dilambangkan dengan H) maka x’ = - x dan y’ = -y dalam bentuk matriks: Jadi H =
28
Persamaan bayangan parabola y = 3x2 – 6x + 1 setelah dirotasikan
Contoh Persamaan bayangan parabola y = 3x2 – 6x + 1 setelah dirotasikan pada pangkal koordinat dengan sudut putaran +180o, adalah….
29
disubstitusi ke: y = 3x2 – 6x + 1 -y’= 3(-x’)2 – 6(-x’) + 1
Pembahasan H berarti: x’ = -x → x = -x’ y’ = -y → y = -y’ disubstitusi ke: y = 3x2 – 6x + 1 -y’= 3(-x’)2 – 6(-x’) + 1 -y’ = 3(x’)2 + 6x + 1 (dikali -1) Jadi bayangannya: y = -3x2 – 6x - 1
30
DILATASI (Perkalian) Dilatasi
Adalah suatu transformasi yang mengubah ukuran (memperbesar atau memperkecil) suatu bangun tetapi tidak mengubah bentuk bangunnya.
31
Jika titik P(x,y) didilatasi terhadap pusat O(0,0) dan faktor skala k
Dilatasi Pusat O(0,0) dan faktor skala k Jika titik P(x,y) didilatasi terhadap pusat O(0,0) dan faktor skala k didapat bayangan P’(x’,y’) maka x’ = kx dan y’ = ky dan dilambangkan dengan [O,k]
32
sumbu X di A dan memotong sumbu Y di B. Karena dilatasi
Contoh Garis 2x – 3y = 6 memotong sumbu X di A dan memotong sumbu Y di B. Karena dilatasi [O,-2], titik A menjadi A’ dan titik B menjadi B’. Hitunglah luas segitiga OA’B’
33
karena dilatasi [O,-2] maka
Pembahasan garis 2x – 3y = 6 memotong sumbu X di A(3,0) memotong sumbu Y di B(0,2) karena dilatasi [O,-2] maka A’(kx,ky)→ A’(-6,0) dan B’(kx,ky) → B’(0,4)
34
titik O(0,0) membentuk segitiga
Titik A’(-6,0), B’(0,-4) dan titik O(0,0) membentuk segitiga seperti pada gambar: Sehingga luasnya = ½ x OA’ x OB’ = ½ x 6 x 4 = 12 X Y 4 6 O A B
35
Dilatasi Pusat P(a,b) dan
faktor skala k bayangannya adalah x’ = k(x – a) + a dan y’ = k(y – b) + b dilambangkan dengan [P(a,b) ,k]
36
Titik A(-5,13) didilatasikan oleh [P,⅔] menghasilkan A’.
Contoh Titik A(-5,13) didilatasikan oleh [P,⅔] menghasilkan A’. Jika koordinat titik P(1,-2),maka koordinat titik A’ adalah….
37
Pembahasan A(-5,13) A’(x’ y’) [P(1,-2),⅔] [P(a,b) ,k] A(x,y) A’(x’,y’)
x’ = k(x – a) + a y’ = k(y – b) + b A(-5,13) A’(x’ y’) [P(a,b) ,k] [P(1,-2),⅔]
38
Jadi koordinat titik A’(-3,8)
x’ = k(x – a) + a y’ = k(y – b) + b A(-5,13) A’(x’ y’) x’ = ⅔(-5 – 1) + 1 = -3 y’= ⅔(13 – (-2)) + (-2) = 8 Jadi koordinat titik A’(-3,8) [P(1,-2),⅔]
39
TRANSFORMASI INVERS Transformasi Invers Untuk menentukan bayangan
suatu kurva oleh transformasi yang ditulis dalam bentuk matriks, digunakan transformasi invers
40
oleh transformasi yang dinyatakan dengan matriks adalah….
Contoh Peta dari garis x – 2y + 5 = 0 oleh transformasi yang dinyatakan dengan matriks adalah….
41
Pembahasan A(x,y) A’(x’ y’) Ingat: A = BX maka X = B-1.A
42
Diperoleh: x = 3x’ – y’ dan
y = -2x’ + y’
43
3x’ – y’ – 2(-2x’ + y’) + 5 = 0 3x’ – y’ + 4x’ – 2y’ + 5 = 0
x = 3x’ – y’ dan y= -2x’ + y’ disubstitusi ke x – 2y + 5 = 0 3x’ – y’ – 2(-2x’ + y’) + 5 = 0 3x’ – y’ + 4x’ – 2y’ + 5 = 0 7x’ – 3y’ + 5 = 0 Jadi bayangannya: 7x – 3y + 5 = 0
44
SELAMAT BELAJAR
Presentasi serupa
© 2024 SlidePlayer.info Inc.
All rights reserved.