Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

Bab 1 Muatan dan Medan Listrik

Presentasi serupa


Presentasi berjudul: "Bab 1 Muatan dan Medan Listrik"— Transcript presentasi:

1

2 Bab 1 Muatan dan Medan Listrik
Listrik & Magnetika MUSTAKIM Jurusan Teknik Mesin Sekolah Tinggi teknologi Nasional Yogyakarta

3 Tujuan Anda mengerti tentang: Muatan Gaya Listrik Medan listrik
Dipol listrik

4 Ilmu Listrik Ilmu yang mempelajari tingkah laku muatan
Dalam ilmu listrik, hanya dijelaskan bagaimana muatan bertingkah laku, bukan muatan itu apa Muatan adalah besaran skalar

5 I. Hukum Coulomb Pada tahun 600 sebelum masehi bangsa yunani kuno telah mengetahui bahwa jika batu ambar digosok- gosokkan pada wool akan dapat menarik benda-benda ringan. Ini menunjukkan bahwa batu ambar mempunyai muatan listrik. Istilah ini diambil dari perkataan yunani yaitu “elektron” yang berarti batu ambar. Diketahui bahwa ada dua sifat dari benda yang bermuatan yaitu tarik menarik dan tolak menolak, hal ini menunjukkan bahwa terdapat dua jenis muatan yaitu muatan negatif dan muatan positif.

6 Perkataan negatif dan positif hanya pemberian nama untuk memudahkan saja, tidak mempunyai arti matematis apa-apa. Sebenarnya, suatu benda yang bermuatan negatif mempunyai kelebihan sesuatu, sedang benda yang bermuatan positif kehilangan sesuatu yang sama. Batang karet yang digosok dengan bulu menjadi bermuatan negatif dan potongan kaca yang digosok dengan sutera akan menjadi bermuatan positif.

7 Teori Muatan Muatan disimbolkan dengan q atau Q satuannya coulomb atau C Ada 2 jenis muatan: positif dan negatif Dua muatan sejenis tolak-menolak Dua muatan lain jenis tarik-menarik

8 Perhatian Muatan sejenis tidak berarti kedua muatan tersebut identik, hanya bahwa keduanya positif atau keduanya negatif Muatan berlainan jenis berarti bahwa kedua muatan memiliki tanda yang berlawanan

9 Massa elektron me = 9,1 X 10-31 kg
Teori Atom Muatan elektron e = 1,602 X C Massa elektron me = 9,1 X kg Massa proton mp = 1,67 X kg

10 Sistem Periodik

11 Sistem Periodik

12 Hukum Coulomb Charles Augustin de Coulomb dalam penelitiannya mendapatkan bahwa gaya tarik –menarik atau tolak- menolak antara “muatan-muatan titik”, yaitu benda- benda bermuatan yang ukurannya kecil dibandingkan dengan jarak r antaranya berbanding terbalik dengan kwadrat jaraknya. Demikian juga gaya-gaya itu tergantung pada jumlah muatan dari tiap-tiap benda. Jumlah muatan suatu benda dapat digambarkan dengan pernyataan kelebihan jumlah elektron atau proton didalam benda.

13 Gaya Listrik Untuk muatan q1 dan q2 yang terpisah sejauh r, besarnya gaya listrik F pada masing-masing muatan adalah F = k q1 q Hukum Coulomb r 2 k = = 9,0 X 109 N.m2/C2 40

14 Strategi Penyelesaian Soal
Gaya Listrik Jarak harus dinyatakan dalam satuan m, muatan dalam C dan gaya dalam N Gaya listrik adalah sebuah vektor, sehingga gaya total pada muatan adalah jumlah vektor dari gaya-gaya individu Dalam kasus distribusi kontinu dari muatan, jumlah vektor dapat dihitung dengan cara integral

15 Contoh Soal 1 Penjumlahan vektor gaya listrik
Dua muatan titik diletakkan pada sumbu y sbb: muatan q1 = +2,0 C di y = 0,30 m dan muatan q2 = +4,0 C di y = -0,30 m. Carilah besar dan arah gaya total yang dikerahkan oleh kedua muatan ini pada muatan Q = +4,0 C di x = 0,4 m

16 Penyelesaiannya Pertama buatlah gambar sumbu xy dan posisi di mana partikel q1, q2 dan Q berada. Tentukanlah arah gaya listrik yang ditimbulkan q1 dan q2.

17 Penyelesaiannya Gaya total pada Q adalah jumlah vektor dari gaya- gaya yang ditimbulkan oleh q1 dan q 2. Muatan q1 menimbulkan gaya F1 pada muatan Q: F1 pada Q = k |q1 Q| r2 = (9,0 x 109 N.m2/C2)(2,0 x 10-6 C)(4,0 x 10-6 C) (0,50 m)2 = 0,29 N

18 Penyelesaiannya Cara paling mudah menjumlahkan vektor adalah menggunakan komponen x dan y. Sudut  adalah di bawah sumbu x, sehingga komponen gaya ini diberikan oleh: (F1 pada Q)x = (F1 pada Q) cos  = (0,29 N) 0,40 m 0,50 m = 0,23 N (F1 pada Q)y = -(F1 pada Q) sin  = -(0,29 N) 0,30 m = -0,17 N

19 Penyelesaiannya Sementara itu muatan q2 menimbulkan gaya F2 pada muatan Q: F2 pada Q = k |q2 Q| r2 = (9,0 x 109 N.m2/C2)(4,0 x 10-6 C)(4,0 x 10-6 C) (0,50 m)2 = 0,58 N Komponen gaya F2 pada Q adalah: (F2 pada Q)x = (0,58 N) cos  = 0,46 N (F2 pada Q)y = (0,58 N) sin  = 0,34 N

20 Penyelesaiannya Maka komponen gaya Ftotal pada Q adalah:
Fx = 0,23 + 0,46 = 0,69 N Fy = -0,17 + 0,34 = 0,17 N Fy Ftotal = 0,71 N  Fx Arah Ftotal adalah pada sudut  di atas sumbu x. tan  = Fy = 0,17 N = 0,25 Fx 0,69 N  = arc tan (0,25) = 14o

21 Medan Listrik Medan listrik E adalah gaya listrik per satuan muatan q0 yang dikerahkan pada muatan tsb. E = F0 / q0 q0 F0 E F q0

22 Perhatian Gaya listrik pada sebuah benda yang bermuatan ditimbulkan oleh medan listrik yang diciptakan oleh benda bermuatan lainnya Persamaan Fo = qo E dapat digunakan hanya untuk mencari gaya listrik pada sebuah muatan titik

23 Vektor Medan Listrik E = 1 |q| besarnya medan listrik
40 r sebuah muatan titik E = qr vektor medan listrik 40 r muatan titik

24 Strategi Penyelesaian Soal
Penghitungan Medan Listrik Medan listrik adalah sebuah vektor, sehingga medan total adalah jumlah vektor dari medan individu Vektor E yang dihasilkan oleh muatan titik positif arahnya menjauhi muatan tersebut Vektor E yang dihasilkan oleh muatan titik negatif arahnya menuju muatan tersebut

25 Garis Medan Listrik

26 Garis Medan Listrik

27 Contoh Soal 2 Elektron dalam sebuah Medan Homogen
Sebuah medan listrik di antara dua pelat konduktor sejajar adalah E=1,00 X N/C dengan arah ke atas. a) Jika sebuah elektron dilepaskan dari keadaan diam di pelat sebelah atas, berapakah percepatannya?; b) Berapa laju dan energi kinetik yang diperoleh elektron waktu berjalan 1,0 cm ke plat sebelah bawah?; c) Berapa waktu yang dibutuhkan elektron untuk menempuh jarak ini?

28 Penyelesaian Diketahui : me = 9,11 X 10-31 kg qe = -1,60 X 10-19 C
E = 1,00 X 104 N/C Ditanya a) ay, b) vy dan K, c) t Jawab :

29 Penyelesaian b) v0y = 0, y0 = 0 dan y = -1,0 X 10-2 m
vy2 = v0y2 + 2ay (y –y0) = 2ay y

30 Penyelesaian c) vy = v0y + ay t Kita dapat juga mencari waktu t dengan
memecahkan persamaan: y = y0 + v0y t + ½ ay t2

31 Dipol Listrik Sebuah dipol listrik adalah sepasang muatan listrik yang besarnya sama, tetapi tandanya berlawanan dan terpisah sejauh d. p d  d sin  E

32 Momen Dipol Listrik Hasil kali muatan q dan jarak d dinyatakan sebagai momen dipol listrik p dan besarnya p = qd Arah vektor p adalah dari muatan negatif menuju muatan positif. Sebuah molekul air H2O adalah contoh dipol listrik.

33 Gaya pada Dipol Listrik
Gaya F+ dan F- pada kedua muatan itu mempunyai besar qE yang sama, tetapi arahnya berlawanan, dan jumlah kedua gaya itu sama dengan nol. p F+= q E d  d sin  E F- = -q E

34 Torsi pada Dipol Listrik
Torsi dihitung terhadap pusat dipol. Jika  adalah sudut antara medan listrik dan momen dipol, maka lengan tuas untuk setiap F+ dan F- adalah (d /2) sin . Torsi dari F + dan F- mempunyai besar yang sama, yakni (qE) (d /2) sin , dan kedua torsi merotasikan dipol itu dalam arah sama dgn perputaran jam. Maka besar torsi netto sama dengan dua kali besar torsi individu:  = (qE ) (d sin  ) = pE sin 

35 Energi Potensial Dipol Listrik
Kerja dW yang dilakukan oleh sebuah torsi  selama pergeseran d yang sangat kecil diberikan oleh persamaan: dW =  d Karena torsi tsb adalah dalam arah yang semakin berkurang,  = -pE sin sehingga dW = -pE sin d

36 Energi Potensial Dipol Listrik
Dalam suatu pergeseran berhingga, kerja total yang dilakukan pada dipol tsb adalah Karena W = U1 – U2 , maka U() = - pE cos  Perkalian skalar p . E = pE cos  Sehingga energi potensial U () = - p . E

37 Contoh Soal 3 Gaya dan torsi pada sebuah dipol listrik
-q p o 145o E +q Contoh Soal 3 Gaya dan torsi pada sebuah dipol listrik Sebuah dipol listrik berada dalam medan listrik homogen 5,0 x 105 N/C. Dipol tersebut adalah ± 1,6 x C dan terpisah sejauh 0,125 nm. Carilah a) gaya netto yang dikerahkan medan pada dipol; b) besar dan arah momen dipol listrik; c) besar dan arah torsi; d) energi potensial sistem

38 Penyelesaian Diketahui : q = 1,6 X 10-19 C; d = 0,125 X 10-9 m
E = 5,0 X 105 N/C;  = 145o Ditanya: a) F = ? b) p = ? c)  = ? d) U = ? Jawab : a) F+ = qE dan F- = -qE Karena medan itu homogen maka gaya-gaya pada kedua muatan itu sama besar dan berlawanan, sehingga gaya total F = 0 N

39 Penyelesaian b) p = qd = (1,6 X 10-19 C)(0,125 X 10-9 m)
= 2,0 X C.m, dari negatif ke positif c)  = pE sin = (2,0 X C.m)(5,0 X 105 N/C)(sin 45o) = 5,7 X N.m, keluar dari bidang d) U = -pE cos = -(2,0 X C.m)(5,0 X 105 N/C)(sin 45o) = 5,7 X J

40 Soal Latihan 1 Elektron yang berlebih ditempatkan pada sebuah bola timah kecil yang massanya 8,00 g sehingga muatan nettonya adalah - 3,20 X 10-9 C. Nomor atom timah adalah 82 dan massa atomnya adalah 207 g/mol. a) Carilah banyaknya elektron yang berlebih pada bola itu b) Berapa banyakkah elektron yang berlebih per atom timah?

41 Penyelesaian Diketahui : m = 8,00 g Q = -3,20 X 10-9 C
NA = 6,02 X 1023 atom/mol Ditanya: a) Jumlah elektron pada bola b) Jumlah elektron per atom Jawab : Jumlah elektron = -3,20 X 10-9 C -1,6 X C = 2 X elektron

42 Penyelesaian Massa atom = 207 X 10-3 kg/mol 6,02 X 1023 atom/mol
= 3,44 X kg/atom Jumlah atom = ,00 X 10-3 kg 3,44 X kg/atom = 2,32 X atom Jumlah elektron/atom = 2 X 1010 elektron 2,32 X 1022 atom = 8,58 X 10-13

43 Soal Latihan 2 Perkirakanlah berapa banyak elektron yang ada dalam tubuh manusia. Buatlah sebarang asumsi yang dirasakan perlu, tapi nyatakanlah secara jelas anggapan tersebut. Berapakah muatan gabungan dari semua elektron tersebut?

44 Penyelesaian Diketahui : mproton ≈ mneutron = 1,67 X 10-27 kg
Ditanya : Jumlah elektron dalam tubuh manusia Jawab : Mayoritas tubuh manusia terdiri atas air (H2O). Rumus unsur Hidrogen = 1H1 dan Oksigen = 8O16 mH2O = (18 x 1,673 X kg) = 30 X kg Asumsikan massa tubuh manusia rata-rata 60 kg. Jumlah H2O = 60 kg / 30 X kg = 2 X 1027 Jumlah elektron = 10 X 2 X 1027 = 2 X 1028 Jumlah muatan = (2 X 1028) x (1,6 X C) = 3 X 109 C

45 Tugas Terstruktur Dua muatan titik diletakkan pada sumbu y sbb: muatan q1 = -1,5 nC di y = 0,6 m, dan muatan q2 = +3,2 nC di titik asal (y = 0). Berapakah gaya total (besar dan arahnya) yang dikerahkan oleh kedua muatan ini pada muatan ketiga q3 = +5,0 nC di y = -0,4 m? (soal no. 13 bab 22 buku Young & Freedman)

46 Tugas Terstruktur a) Berapakah seharusnya muatan (tanda dan besarnya) dari sebuah partikel yang massanya 1,45 g supaya partikel itu tetap stasioner bila ditempatkan dalam sebuah medan listrik yang diarahkan ke bawah dan besarnya 650 N/C? b) Berapakah besarnya sebuah medan listrik ketika gaya listrik pada sebuah proton sama besar dengan beratnya? (soal no. 19 bab 22 buku Young & Freedman)

47 Tugas Terstruktur Muatan titik q1 = -4,5 nC dan q2 = + 4,5 nC dipisah dengan jarak 3,1 mm yang membentuk sebuah dipol listrik; a) Cari momen dipol listrik b) Muatan-muatan itu berada dalam sebuah medan listrik homogen yang arahnya membentuk sudut 36,9o dengan garis yang menghubungkan muatan-muatan itu. Berapakah besarnya medan ini jika torsi yang dikerahkan pada dipol ini mempunyai besar 7,2 x 10-9 N.m? (soal no. 47 bab 22 buku Young & Freedman)

48


Download ppt "Bab 1 Muatan dan Medan Listrik"

Presentasi serupa


Iklan oleh Google