Upload presentasi
Presentasi sedang didownload. Silahkan tunggu
Diterbitkan olehLanny Yanti Sumadi Telah diubah "6 tahun yang lalu
2
Fungsi Kepekatan Peluang Khusus Pertemuan 10
Matakuliah : L0104 / Statistika Psikologi Tahun : 2008 Fungsi Kepekatan Peluang Khusus Pertemuan 10
3
Learning Outcomes Pada akhir pertemuan ini, diharapkan mahasiswa akan mampu : Mahasiswa akan dapat menghitung peluang, nilai harapan dan varians fungsi kepekatan seragam dan eksponensial. 3 Bina Nusantara
4
Outline Materi Fungsi kepekatan seragam Fungsi distribusi seragam
Nilai harapan dan varians fungsi kepekatan seragam Fungsi kepekatan eksponensial Fungsi distribusi eksponensial Nilai harapan dan varians peubah acak eksponensial 4 Bina Nusantara
5
Uniform Distribution A continuous rv X is said to have a uniform distribution on the interval [a, b] if the pdf of X is X ~ U (a,b) Bina Nusantara
6
Exponential distribution
X is said to have the exponential distribution if for some Bina Nusantara
7
Probability for a Continuous rv
If X is a continuous rv, then for any number c, P(x = c) = 0. For any two numbers a and b with a < b, Bina Nusantara
8
Expected Value The expected or mean value of a continuous rv X with pdf f (x) is The expected or mean value of a discrete rv X with pmf f (x) is Bina Nusantara
9
Expected Value of h(X) If X is a continuous rv with pdf f(x) and h(x) is any function of X, then If X is a discrete rv with pmf f(x) and h(x) is any function of X, then Bina Nusantara
10
Variance and Standard Deviation
The variance of continuous rv X with pdf f(x) and mean is The standard deviation is Bina Nusantara
11
Short-cut Formula for Variance
Bina Nusantara
12
The Cumulative Distribution Function
The cumulative distribution function, F(x) for a continuous rv X is defined for every number x by For each x, F(x) is the area under the density curve to the left of x. Bina Nusantara
13
Using F(x) to Compute Probabilities
Let X be a continuous rv with pdf f(x) and cdf F(x). Then for any number a, and for any numbers a and b with a < b, Bina Nusantara
14
Ex 6 (Continue). X = length of time in remission, and
What is the probability that a malaria patient’s remission lasts long than one year? Bina Nusantara
15
Obtaining f(x) from F(x)
If X is a continuous rv with pdf f(x) and cdf F(x), then at every number x for which the derivative Bina Nusantara
16
Selamat Belajar Semoga Sukses.
Bina Nusantara
Presentasi serupa
© 2024 SlidePlayer.info Inc.
All rights reserved.