Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

TUGAS UAS LOGIKA & ALGORITMA * KNAPSACK PROBLEM *METODE GREEDY

Presentasi serupa


Presentasi berjudul: "TUGAS UAS LOGIKA & ALGORITMA * KNAPSACK PROBLEM *METODE GREEDY"— Transcript presentasi:

1 TUGAS UAS LOGIKA & ALGORITMA * KNAPSACK PROBLEM *METODE GREEDY
Dosen : Herlawati, S.SI, MM, M.Kom Di Susun Oleh : Manzalina Rachmawati 11.1A.04

2 TUGAS 1 KNAPSACK PROBLEM DALAM METODE GREEDY Diketahui bahwa kapasitas M = 30 kg , Dengan jumlah barang n=3. Cari Nilai Profit Maksimal ! Berat Wi masing-masing barang (W1, W2, W3) = (28, 25, 20) Nilai Pi masing-masing barang (P1, P2, P3) = (38, 34, 25) Pilih barang dengan Nilai Profit Maksimal P1 = …  –> X1 = … P2 = …  –> X2 =  … P3 = … –> X3 = … Pilih barang dengan Berat Minimal W1 = …  –> X1 = … W2 = …  –> X2 = … W3 = …  –>X3 = … Pilih barang dengan menghitung perbandingan yang terbesar dari Profit dibagi Berat (Pi/Wi) yang diurut secara tidak naik, yaitu : P1/W1 = … = … –> X1 = … P2/W2 = … = …  –> X2 = … P3/W3 = … = …  –> X3 = … Fungsi Pembatas dicari dengan rumus: Tabel berdasarkan elemen dari ke-3 kriteria metode Greedy yaitu:

3 Penyelesaian : Pilih barang dengan Nilai Profit Maksimal P1 = 38  –> X1 = 1, dimisalkan sebagai batas nilai atas. P2 = 34 –> X2 = 2/25, dihitung dengan fungsi pembatas. P3 = 25 –> X3 = 0, dimisalkan sebagai batas bawah nilai. * Menyelesaikan Fungsi Pembatas :

4 Pilih barang dengan Berat Minimal W1 = 28 –> X1 = 0, sebagai batas bawah. W2 = 25 –> X2 = 2/5, dihitung dengan fungsi pembatas. W3 = 20 –> X3 = 1, sebagai batas atas. * Menyelesaikan Fungsi Pembatas :

5 Pilih barang dengan menghitung perbandingan yang terbesar dari Profit dibagi Berat (Pi/Wi) yang diurut secara tidak naik, yaitu : P1/W1 = 38/28 = 1,35 –> dengan fungsi pembatas, X1 = 5/28 P2/W2 = 34/25 = 1,36 –> karena terbesar maka, X2 = 1 P3/W3 = 25/20 = 1,25 –> karena terkecil maka, X3 = 0 * Menyelesaikan dengan fungsi pembatas :

6 Tabel berdasarkan elemen dari ke-3 kriteria metode Greedy yaitu: Nilai Profit Maksimal adalah 40, 8 -> di ambil dari nilai terbesar. * dengan cara :

7 TUGAS 2 PROBLEMA DAN MODEL GRAPH DALAM METODE GREEDY Contoh:  TRAVELLING SALESMAN Untuk menentukan waktu perjalanan seorang salesman  seminimal mungkin. Permasalahan: Setiap minggu sekali, seorang petugas kantor telepon berkeliling untuk mengumpulkan coin-coin pada telepon umum yang dipasang diberbagai tempat. Berangkat dari kantornya, ia mendatangi satu demi satu telepon umum tersebut dan akhirnya kembali ke kantor lagi. Masalahnya ia menginginkan suatu rute perjalanan dengan waktu minimal. MODEL GRAPH :   Misalnya : Kantor pusat adalah simpul 1 dan misalnya ada 4 telepon umum, yg kita nyatakan sebagai simpul 2, 3, 4 dan 5 dan bilangan pada tiap-tiap ruas menunjukan waktu (dalam menit ) perjalanan antara 2 simpul . Tentukan model graph dengan waktu perjalanan seminimal mungkin.

8 Langkah penyelesaian : 1
Langkah penyelesaian : 1. Dimulai dari simpul yang diibaratkan sebagai kantor pusat yaitu simpul Dari simpul 1 pilih ruas yang memiliki waktu yang minimal. 3. Lakukan terus pada simpul – simpul yang lainnya tepat satu kali yang nantinya Graph akan membentuk Graph tertutup karena perjalanan akan kembali ke kantor pusat. 4. Problema diatas menghasilkan waktu minimalnya adalah 39 menit ( ) dan diperoleh perjalanan sebagai berikut :

9 Wassalammu’alaikum


Download ppt "TUGAS UAS LOGIKA & ALGORITMA * KNAPSACK PROBLEM *METODE GREEDY"

Presentasi serupa


Iklan oleh Google