Upload presentasi
Presentasi sedang didownload. Silahkan tunggu
1
Koodinasi DOSEN LOGIKA MATEMATIKA
Program Studi S1- Fakultas Informatika- UNIVERSITAS TELKOM 2015-1 20 Agustus 2015
2
Perbedaan Logmat kurikulum 2008 - 2012
Dihilangkannya Bab Aljabar Boolean, karena dialihkan ke mata kuliah Sistem dan Logika Digital Merujuk pada CC2013, Logmat merupakan bagian dari Struktur Diskret, yang menitik beratkan pada 2 kajian yaitu Basic Logic, Proof Techniques
3
Basic Logic Propositional logic Logical connectives Truth tables
Normal forms (conjunctive and disjunctive) Validity Propositional inference rules (concepts of modus ponens and modus tollens) Predicate logic Universal and existential quantification Limitations of propositional and predicate logic (e.g., expressiveness issues)
4
Basic Logic – Learning Outcome
1. Convert logical statements from informal language to propositional and predicate logic expressions. [Application] 2. Apply formal methods of symbolic propositional and predicate logic, such as calculating validity of formulae and computing normal forms. [Application] 3. Use the rules of inference to construct proofs in propositional and predicate logic. [Application] 4. Describe how symbolic logic can be used to model real-life situations or applications, including those arising in computing contexts such as software analysis (e.g., program correctness), database queries, and algorithms. [Application] 5. Apply formal logic proofs and/or informal, but rigorous, logical reasoning to real problems, such as predicting the behavior of software or solving problems such as puzzles. [Application] 6. Describe the strengths and limitations of propositional and predicate logic. [Knowledge]
5
Proof Techniques Notions of implication, equivalence, converse, inverse, contrapositive, negation, and contradiction The structure of mathematical proofs Direct proofs Disproving by counterexample Proof by contradiction Induction over natural numbers (*) Structural induction (*) Weak and strong induction (i.e., First and Second Principle of Induction) (*) Recursive mathematical definitions
6
Proof Techniques-Learning Outcome
1. Identify the proof technique used in a given proof. [Knowledge] 2. Outline the basic structure of each proof technique described in this unit. [Application] 3. Apply each of the proof techniques correctly in the construction of a sound argument. [Application] 4. Determine which type of proof is best for a given problem. [Evaluation] 5. Explain the parallels between ideas of mathematical and/or structural induction to recursion and recursively defined structures. [Evaluation] 6. Explain the relationship between weak and strong induction and give examples of the appropriate use of each. [Evaluation]
7
Bahan Belajar Selain dari teks book dan slide, diharapkan mahasiswa dapat memanfaatkan fasilitas pembelajaran online melalui I-Caring, Diharapkan dosen pengampu dapat memanfaatkan fitur ini
8
Pengampuan kelas Kelas Dosen IF-38-01 SSD IF-38-02 DDR IF-38-03 GIA
IF MZI IF MZI IF DDR IF SWD IF MDS IF BBD IF BDP
9
Aturan Perkuliahan - Penilaian (1)
UTS : 35 % UAS : 35 % KUIS (min sekitar 2x) : 20 % PR (sekitar 5x) : 10 % NB : PR, UTS, UAS dibuat oleh tim dosen KUIS dibuat oleh dosen masing masing Nb: - Sakit / Izin / Alpha dianggap tidak hadir - Bila Titip Absen Otomatis nilai E.
10
Aturan Perkuliahan - Penilaian (2)
Index Nilai Akhir (NA) A : < NA <= 100 AB : < NA <= 80 B : < NA <= 70 BC : < NA <= 65 C : < NA <= 60 D : < NA <= 50 E : < NA <= 40 Nb: Tidak ada tugas tambahan / perbaikan nilai setelah Indeks Nilai Akhir Keluar
11
Referensi No Judul Referensi / Sumber Bahan 1
Soesianto, F., Dwijono, D, Logika Matematika untuk Ilmu Komputer, Penerbit ANDI, 2006 2 Barwise, Jon., Etchemendy, John., Language,Proof And Logic, Seven Bridges Press, New York, 1999 3 Gensler, Harry J., Introduction To Logic, Routledge, New York, 2010 4 Rossen, Kenneth H., Discrete Mathematics and Its Applications 6th Ed, McGRAW-HILL, New York,2007 5 Richard Johnsonbaugh, Discrete Mathematics 6E, Prentice Hall, New York, 2005 6 Munir, Rinaldi., Matematika DIskrit Edisi 3, Penerbit Informatika, Bandung 2005
Presentasi serupa
© 2025 SlidePlayer.info Inc.
All rights reserved.