Upload presentasi
Presentasi sedang didownload. Silahkan tunggu
Diterbitkan olehSusanto Salim Telah diubah "6 tahun yang lalu
1
08 TEORI PROBABILITAS Konsep Dasar Probabilitas Bethriza Hanum ST., MT
Modul ke: 08 Konsep Dasar Probabilitas Fakultas Bethriza Hanum ST., MT Teknik Program Studi Teknik Industri
2
Pengertian dan Pendekatan
Mempelajari probabilitas kejadian suatu peristiwa sangat bermanfaat dalam pengambilan keputusan yang tepat, karena di dunia tidak ada kepastian dan setiap pengambilan keputusan jarang memiliki informasi yang lengkap, sehingga perlu untuk mengetahui berapa besar probabilitas suatu peristiwa kejadian. Probabilitas atau kejadian adalah suatu ukuran tentang kemungkinan suatu peristiwa (event) akan terjadi dimasa depan. Probabilitas dinyatakan dalam dalam presentase.
3
Pendekatan Klasik Mengasumsikan bahwa sebuah peristiwa mempunyai kesempatan untuk terjadi yang sama besar atau memiliki peluang yang sama besar. Probabilitas suatu peristiwa= Jumlah kemungkinan hasil (peristiwa) Jumlah total kemungkinan hasil
4
Contoh Pendekatan Klasik
5
Pendekatan Relatif Probabilitas suatu peristiwa tidak dianggap sama, tetapi tergantung pada berapa banyak suatu peristiwa terjadi dari keseluruhan percobaan atau kegiatan yang dilakukan. Percobaan kejadian relatif = Jumlah peristiwa yang terjadi Jumlah total percobaan/kegiatan
6
Contoh Pendekatan Relatif
Dari data diatas terlihat bahwa jumlah bulan inflasi ada 10 dan jumlah bulan deflasi 2dari total 12. oleh karena itu probabilitas terjadinya inflasi = 10/12 0,83 dan deflasi 2/12 = 0,17
7
Pendekatan Subjektif Menentukan besarnya probabilitas suatu peristiwa didasarkan pada penelitian pribadi dan dinyatakan dalam derajat kepercayaan atau berdasarkan penilaian pribadi. contoh: menurut Menteri Keuangan Indonesia Sri Mulyani pada tahun2007, Indonesia akan mengalami gejalas krisis. Anda akan mendapatkan nilai minimal B untuk mata kuliah statistik 1.
8
HUKUM DASAR PROBABILITAS
1. HUKUM PENJUMLAHAN 2. HUKUM PERKALIAN 3. TEOREMA BAYES 8
9
Peristiwa atau Kejadian Bersama (joint Event)
KONSEP DASAR HUKUM PROBABILITAS Hukum Penjumlahan P(A ATAU B) = P(A) + P(B) Contoh : P(A) = 0,35, P(B) 0,40 DAN P (C) 0,25 Maka P(A ATAU C ) = 0,35 + 0,25 = 0,60 Peristiwa atau Kejadian Bersama (joint Event) A AB B P(A ATAU B) = P(A) + P(B) – P (AB) Apabila P(AB) = 0,2, maka , P(A ATAU B) = 0,35 + 0, 40 – 0,2 = 0,55 9
10
Contoh joint event Kegiatan Perusahaan Jumlah Simpati mentari starone
Sales(A) 30 50 40 120 Buy(B) 10 80 sum 70 200 P(BS) = 40/200 = 0.15 P(AS) = 30/200=0.20 10
11
Peristiwa Saling Lepas(MUTUALLY EXLUSIVE)
KONSEP DASAR HUKUM PROBABILITAS Peristiwa Saling Lepas(MUTUALLY EXLUSIVE) P(AB) = 0 Maka P(A ATAU B) = P (A) + P(B) + 0 = P(A) + P(B) B A Bahwa peristiwa A tidak menjadi bagian peristiwa B. Begitu juga sebaliknya. 11
12
Contoh Kegiatan Perusahaan Jumlah Simpati mentari starone Sales(A) 30
50 40 120 Buy(B) 10 80 sum 70 200 P(A atau B) = P(A) +P(B)-P(AB) = =1 Prob 3 kartu cellular (P(SMS))=0. P(S atau M/S) = P(S)+P(M)+P(S)-P(SMS) = = 1 12
13
EXCERCISE SUATU PERUSAHAAN MEMERLUKAN BAN MOBIL
UNTUK KENDARAAN MILIK PERUSAHAAN. PROB AKAN MEMBELI BAN MEREK UNIROYAL (0,17), GOODYEAR (0,22), LIDAS (0,03), CONTINENTAL (0.29),BRIDGESTONE (0,21), DAN AMSTRONG (0.08).HITUNGLAH PROB BAHWA PERUSAHAAN AKAN MEMBELI: BAN MEREK G atau B Ban Merek U, C atau B Ban Merek L atau A Ban Merek G, C atau A. 13
14
jawab Apabila merek ban tersebut di urutkan
dengan A,B,C,D,E dan F. Maka: P( B U E )= P(B) +P(E) = 0,22 +0,21 = 0.43 P(A U D U E) = ,29+0,21 = )0.67 P(C U F)= = 0.11 P (B U D U F)= 0,22 + 0, = 0.59. Prob Mutually Exlusive. 14
15
HUKUM PERKALIAN PROB Hukum Perkalian
Peristiwa Independen adalah terjadinya peristiwa tidak mempengaruhi probabilitas kejadian lainnya Rumus kejadian A dan B yang saling Independet sbb: P( A DAN B) = P(A) X P(B) Contoh: ada 3 transaksi saham (S&B), transaksi pertama melakukan transaksi beli, dan pada transaksi ke 2&3 bisa melakukan transaksi beli atau jual (bebas dari pengaruh transaksi pertama) Apabila P(A) 0,35 DAN P(B) = 0,25 Maka P(A DAN B) = 0,35 X 0,25 = 0,0875 15
16
Kejadian Bersyarat Kejadian Bersyarat P(B|A) P(B|A) = P(AB)/P(A) 16
17
Kejadian Bersyarat conditional Probability P(B|A)
KONSEP DASAR HUKUM PROBABILITAS Hukum Perkalian P( A DAN B) = P(A) X P(B) Apabila P(A) 0,35 DAN P(B) = 0,25 Maka P(A ∏ B) = 0,35 X 0,25 = 0,0875 Kejadian Bersyarat conditional Probability P(B|A) P(B|A) = P(AB)/P(A) Peristiwa Pelengkap (Complementary Event) P(A) + P(B) = 1 atau P(A) = 1 – P(B) 17
18
DIAGRAM POHON Diagram Pohon
Keputusan Jual atau Beli Jenis Saham Probabilitas bersama Diagram Pohon Suatu diagram berbentuk pohon yang membantu mempermudah mengetahui probabilitas suatu peristiwa Probabilitas Bersyarat 1 x 0,6 x 0,35 = 0,21 BCA 0,35 Jual BLP 0,40 1 x 0,6 x 0,40 = 0,24 BNI 0,25 1 x 0,6 x 0,25 = 0,15 0,6 1 BCA 0,35 1 x 0,4 x 0,35 = 0,14 Beli 0,4 BLP 0,40 1 x 0,4 x 0,40 = 0,16 BNI 0,25 1 x 0,4 x 0,25 = 0,10 0,21+0,24+0,15+0,14 +0,16+0,10 =1,0 Jumlah Harus = 1.0 18
19
Komposisi dari beberapa tingkatan manajemn
CONTOH Komposisi dari beberapa tingkatan manajemn Dari 200 orang eksekutuf ditunjukkan sebagai Berikut: TM 18 (Pria) 2 (W), MM 3 6 (P) 24 (w), LM 24 (p) 96 (w) Total P (78) W (122). a. Jika 200 eksekutuf tersebut scara random seorang eksekutif Berapa prob eksekutif Pria atau eksekutif puncak? b. Dipilih 2 orang berapa prob eks Pria dan seorang Eksekutif wanita c. Terpilih eksekutif pria pada pilihan pertama dan terpilih Eksekutif pria lagi pada pilihan kedua, berapa prob? (jawab ex Prob) 19
20
TEOREMA BAYES Merupakan probabilitas bersyarat-suatu kejadian terjadi setelah kejadian lain ada. Rumus: P(Ai|B) = P(Ai) X P (B|Ai) P(A1) X P(B|A1)+P(A2) X P(B|A2) + … + P(Ai) X P(B|Ai) 20
21
Permutasi nPr = n!/ (n-r)!
BEBERAPA PRINSIP MENGHITUNG Factorial (berapa banyak cara yang mungkin dalam mengatur sesuatu dalam kelompok). Factorial = n! Permutasi (sejumlah kemungkinan susunan jika terdapat satu kelompok objek). Permutasi nPr = n!/ (n-r)! Kombinasi (berapa cara sesuatu diambil dari keseluruhan objek tanpa memperhatikan urutannya. Kombinasi nCr = n!/r! (n-r)! 21
22
TERIMA KASIH 22
Presentasi serupa
© 2024 SlidePlayer.info Inc.
All rights reserved.