Upload presentasi
Presentasi sedang didownload. Silahkan tunggu
Diterbitkan olehSuprianto Suprianto Telah diubah "6 tahun yang lalu
1
OPTIMIZATION OF CONDITION OF METHOD DEVELOPMENT DETERMINATION OF SWEETENERS, PRESERVATIVES AND DYES IN ESSENCES SYRUP SIMULTANEOUSLY USING HIGH PERFORMANCE LIQUID CHROMATOGRAPHY Aceh International Pharmacy Conference 1 Suprianto, 2 Effendy De Lux Putra, and 3 Siti Morin Sinaga 1 College of Health Sciences Helvetia, Medan, Indonesia 20124 1,2,3 University of Sumatera Utara, Medan, Indonesia 20155 Coorresponding Author: ekahasbi@gmail.com
2
BACKGROUND SYRUP (BSN,1994) Composition: Sugar Preservatives Dyes (BSN,1994) EE ssence Syrup (Satuhu, S, 1994) No Sweeteners
3
BACKGROUND OPTIMIZATION OF CONDITION OF METHOD DEVELOPMENT DETERMINATION OF SWEETENERS, PRESERVATIVES AND DYES IN ESSENCES SYRUP SIMULTANEOUSLY USING HPLC Saccharin and Cyclamate (Qualitative: BSN, 1992) Benzoic and Sorbic Acids ( HPLC: BSN, 1992 ) Tartrazine and Sunset Yellow (TLC: BSN, 1992) Saccharin (Hayun, et al., 2004) Cyclamate (Novelina, et al.,2009) Benzoic and Sorbic Acids ( BSN, 1992 ) Tartrazine and Sunset Yellow (Veni, et al., 2011) HPLC METHOD ANALYSIS METHOD (BSN)
4
OPTIMUM CONDITION PROPERTIESS: SOLUBLE IN WATER Maximum Wavelength: 202 nm (Saccharin) 194 nm (Cyclamate) 225 nm (Benzoate) 255 nm (Sorbate) 427 nm (Tartrazine) 481 nm (SYellow) FOOD ADDITIVES LITERATURE S O O Na H N O S N O O O C-O-Na O C H H3CH3C C H C - O - K O C H C H SO 3 Na N N NaO 3 S OH NaOOC N N N N OH NaO 3 S SO 3 Na SACCHARIN CYCLAMATE TARTRAZINE SUNSET YELLOW BENZOATE SORBATE HPLC D AD REVERSE PHASE RETENSI TIME CAPACITY FACTOR TAILING FACTOR RESOLUTION SELECTIVITY PLATES VOID VOLUME WAVELENGTHS pH of MOBILE PHASE MOBILE PHASE COMPOSITION. FLOW RATE COLUMN TEMPERATURE
5
Materials and instruments MATERIAL Methanol (E. Merck) Sodium Dihydrogen phospate (E Merck) Ortohydrogen phospate (E. Merck) Saccharin (Sigma-Aldrich) Cyclamate (Sigma-Aldrich) Sodium Benzoate (Sigma- Aldrich) Potasium Sorbate (Sigma- Aldrich) Tartrazine (Sigma-Aldrich) Sunset Yellow (Sigma-Aldrich) Instrument Probe UV 1800 spectrophotometer (Shimadzu) UFLC system Agilent Series 1290 DAD. ZORBAX Eclipse Plus C18 Column (100 mm x 4.6 mm, 3.5 μm) pen type digital pH meter (ATC) Sonicator (Bransonic) Analytical Balance (Boeco) Vacuum Pump (Bust ) Cellulose Nitrate Filter 0.45 µm Syringe Filter Polytetrafluoroethylene (PTFE) 0.45 µm Volumetric Flask (Oberoi) Volume Pipette (Oberoi) Beaker Measuring Cylinder METHODE
6
1,36 gram NaH 2 PO 4 0,78 ml H 3 PO 4 Mr = 98 g/mol = 1,685 g/ml % = 85% a. preparation 1. Buffer phospate solution SOLUTION A 10 mM SOLUTION B 10 mM Ph 4,7± 0,1 1000 ml Dropwise pH 4,5 ± 0,1 pH 4,3 ± 0,1 pH 4,0 ± 0,1
7
50 mg 2. Stock solution Saccharin Cyclamate Sodium Benzoate Potasium Sorbate Tartrazine Sunset Yellow 3. Single solution Saccharin: 5,24 ppm Cyclamate: 80,48 ppm Sodium Benzoate: 8,40 ppm Potasium Sorbate: 2,30 ppm Tartrazine: 84,48 ppm Sunset Yellow: 4,16 ppm 4. Mixed solution MS 10 ml STOCK 50 ml Saccharin: 1 ppm Cyclamate: 75 ppm Sodium Benzoate: 3 ppm Potasium Sorbate: 6 ppm Tartrazine: 10 ppm Sunset Yellow: 5 ppm SS 10 ml METHODE
8
b. Maximum wavelength determination 1. WAVELENGTH : 200 nm - 600 nm Maximum Wavelength SINGLE SOLUTION Saccharin: 5,24 ppm Cyclamate: 80,48 ppm Sodium Benzoate: 8,40 ppm Potasium Sorbate: 2,30 ppm Tartrazine: 84,48 ppm Sunset Yellow: 4,16 ppm 2. VOID VOLUME Voids Volume: 20%; 30%; 40% : 200 nm Mobile Phase pH: 4,5 Mobile Phase Composition: 75 : 25 Flow Rate: 0,8 ml/min Column Temperature: 30 o C 3. WAVELENGTH Void Volume: Optimum : 200-300 nm, 440 – 470 nm Mobile Phase pH: 4,5 Mobile Phase Composition: 75 : 25 Flow Rate: 0,8 ml/min Column Temperature: 30 o C Rretensi times Capacity Factor Tailing Facttor Resolution Selectivity Plates MIXED SOLUTION Saccharin: 1 ppm Cyclamate: 75 ppm Sodium Benzoate: 3 ppm Potasium Sorbate: 6 ppm Tartrazine: 10 ppm Sunset Yellow: 5 ppm MIXED SOLUTION Saccharin: 1 ppm Cyclamate: 75 ppm Sodium Benzoate: 3 ppm Potasium Sorbate: 6 ppm Tartrazine: 10 ppm Sunset Yellow: 5 ppm METHODE C. metHode HPLC OPTIMIZATION
9
4. Mobile Phase pH Void Volume: Optimum : Optimum Mobile Phase pH: 4,0; 4,3; 4,5; 4,7 Phosphate buffer-methanol Composition: 75 : 25 Flow rate: 0,8 ml/menit Column Temperature: 30 o C 5. MOBILE PHASE COMPOSITION Void Volume: Optimum : Optimum Mobile Phase: Optimum Phosphate buffer-methanol Composition: 73:27; 75:25; 77:23 Flow Rate: 0,8 ml/min Column Temperature 25 o C 6. FLOW RATES Void Volume: Optimum : Optimum Mobile Phase pH: Optimum Mobile Phase Composition: Optimum Flow Rates: 0,8; 1,0 ; 1,2 ml/min Column Temperature: 30 o C 7. COLUMN TEMPERATURE Void Volume: Optimum : Optimum Mobile Phase: Optimum Mobile Phase Composition: Optimum Flow Rate: Optimum Column Temperature: 25, 30, 35 o C Rretensi times Capacity Factor Tailing Facttor Resolution Selectivity Plates c. metHode HPLC OPTIMizATION MIXED SOLUTION Saccharin: 1 ppm Cyclamate: 75 ppm Sodium Benzoate: 3 ppm Potasium Sorbate: 6 ppm Tartrazine: 10 ppm Sunset Yellow: 5 ppm MIXED SOLUTION Saccharin: 1 ppm Sunset Yellow: 5 ppm Sodium Benzoate: 3 ppm Potasium Sorbate: 6 ppm Tartrazine: 10 ppm Cyclamate: 75 ppm METHODE
10
results 1. Determination of Maximum Wavelength 201 nm 224 nm 254 nm 197 nm 427 nm 482 nm
11
results Table 1. Effect of Void Volume on the Optimization Parameters 2. Optimation of Void volume
12
results 2. Optimation of wavelengths Table 2. The data of Tailings Factor on the Wavelength Optimization Ree and Stoa, 2011 Novelina, et al., 2009 Jurcovan, et al., 2012
13
results 3. Optimization of Mobile phase pH Table 3. Effect of Buffer pH 4.0 and 4.3 on the Optimization Parameters Table 4. Effect of Buffer pH 4.5 and 4.7 on the Optimization Parameters
14
results 4. Optimization of mobile phase composition Table 5. Effect of Mobile Phase Composition on the Optimization Parameters
15
results 5. Flow rate Optimization Table 6. Effect of Flow Rate on the Optimization Parameters
16
results 6. Optimization of Column Temperature Table 7. Effect of Column Temperature on the Optimization Parameters
17
results Optimum codition of HPLC method Fuigure 2. Chromatograms of mixed standard solution Ft = 1.23256 Ft = 1.02874 Ft = 1.01667 Ft = 1.61538 Ft = 1.30620 Ft = 1.55479 Compounds k'NRsα TAR0.991330-- SAC2.1350235.632.15 CYC4.2842078.512.01 SUN6.60371315.626.66 BEN10.90112509.061.65 SOR16.891295711.091.55 Rs ≥ 2 0,5 ≤ k ≤ 20 0,9 ≤ Ft < 2,0 > 1 N >>> Snyder, et al, 2010 Snyder, et al, 1997
18
Conclusions The results showed that the optimum conditions for the test were the wavelength of 200 nm for the detection of cyclamate, a wavelength of 220 nm for the detection of saccharin, benzoate and sorbate and a wavelength of 450 nm for the detection of tartrazine and sunset yellow, void volume of 30%, mobile phase pH 4.5 phosphate buffer : methanol (75 : 25, v/v), flow rate of 1,0 ml/min, column temperature of 30 o C.
19
References 1.Badan Standarisasi Nasional (2004). Bahan Tambahan Pangan Pemanis Buatan – Persyaratan Penggunaan dalam Produk Pangan. SNI 01-6993-2004. Jakarta: Badan Standarisasi Nasional. pp. 1-42. 2.Hartono, E. (2007). Pengaruh pH pada Penetapan Kadar Natrium Benzoat dalam Sirup Melalui Isolasi dengan Pelarut Eter Secara KCKT. Pharmacon 8(1): 28–33. 3.Jurcovan, M.M., Atudosiei, N.L., Daniela Mihaila, D., (2012). A simple HPLC Method for Determination of Tartrazine and Sunset Yellow in Soft Drinks Samples. Bulletin UASVM Agriculture, 69(2): 267 – 271. 4.Novelina, Y.M., Sutanto dan Fatimah, A. (2009). Validasi Metode Analisis Penetapan Kadar Senyawa Siklamat dalam Minuman Ringan. Prosiding PPI Standarisasi; 2009; Nov 9; Jakarta: Badan Standarisasi Nasional. 5.Pylypiw, H.M., dan Grether, M.T. (2000). Rapid High Performance Liquid Chromatography Method for the Analysis of Sodium Benzoate and Potassium Sorbate in Foods. Journal of Chromatography A. 888(1): 299–304. 6.Ree, M., dan Stoa, E. (2011). Simultaneous Determination of Aspartame, Benzoic Acid, Caffeine, and Saccharin in Sugar-Free Beverages Using HPLC. Concordia College Journal of Analytical Chemistry 2(1): 73-77. 7.Satuhu, S. (1994). Penanganan dan Pengolahan Buah. Jakarta: PT Penebar Swadaya. Hal. 9-52. 8.Serdar, M., dan Knezevic, Z. (2011). Determination of Artificial Sweeteners in Beverages and Special Nutritional Products Using High Performance Liquid Chromatography. Arh. Hig. Rada Toksikol. 62(1): 169-173. 9.Snyder, L.R., Kirkland, J.J., dan Dolan, J.W. (2010). Introduction to Modern Liquid Chromatography. Edisi 3. New York: A John Willey & Sons, Inc. pp 20-83, 532-542, 887-890. 10.Veni, N.K., Menyyanathan, S.N., Babu, B.N., Sharma, A.K., Srikanth, B.A., Satyam A.B., dan Sureh, B. (2011). Simultaneous Estimation of Colorants Sunset Yellow and Tartrazine in Food Products by RP HPLC, International Journal of Research in Pharmaceutical Sciences 2(4): 545-549. 11.Xiao-tong , J., Guo-song , C., Ling-ling , J.dan Yan-li., Z. (2011). Simultaneous HPLC Determination of 6 Sweeteners. Analysis Detected Food Science. 32(6): 165-168. 12.Zatar, N.A. (2007). Simultan Determination of Seven Synthetic Water Soluble Food Colorants by Ion Pair Reversed Phase HPLC. Journal Food and Technology 5(3): 220-224.
Presentasi serupa
© 2024 SlidePlayer.info Inc.
All rights reserved.