Upload presentasi
Presentasi sedang didownload. Silahkan tunggu
1
DISTRIBUSI PROBABILITAS
2
Variabel Random(Acak) :
adalah suatu fungsi yang menghubungkan sebuah bilangan riil dengan setiap unsur didalam ruang sampel S ( himpunan semua hasil percobaan). Untuk menyatakan variabel random digunakan sebuah huruf besar, misalkan X. Sedangkan huruf kecilnya, misalkan x, menunjukkan salah satu dari nilainya.
3
Contoh : S = {BBB, BBC, BCB, CBB, BCC, CBC, CCB, CCC}
dengan B menunjukkan “tanpa cacat (baik)” dan C menunjukkan “cacat”. Variabel random X yang menyatakan jumlah barang yang cacat pada saat tiga komponen elektronik diuji, maka ditulis X = 0, 1, 2, 3.
4
VARIABEL ACAK Variabel Random Variabel acak diskret
Variabel acak kontinu
5
Distribusi Probabilitas :
Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=x) disebut distribusi probabilitas X (distribusi X)
6
Himpunan pasangan tersusun (x, f(x)) adalah sebuah fungsi probabilitas, fungsi padat probabilitas, atau distribusi probabilitas dari suatu variabel random diskrit X bila untuk setiap keluaran x yang mungkin, berlaku : - P(X = x) = f(x) -
7
Distribusi Binomial Sifat-sifat sebagai berikut :
Percobaan itu terdiri dari n pengulangan Tiap pengulangan memberikan hasil yang dapat diidentifikasi sukses atau gagal Probabilitas sukses dinyatakan dengan p, tetap konstan (tidak berubah) dari satu pengulangan ke pengulangan lainnya, sedangkan probabilitas gagal adalah q = 1- p Tiap pengulangan dan pengulangan lainnya saling bebas.
8
Distribusi Binomial Distribusi Binomial dinyatakan sebagai : b(x,n,p)
dimana x = 1, 2, …, n
9
Contoh Sebuah proses Bernoulli untuk QC dilakukan dengan memilih 3 komponen secara simultan dari sebuah proses produksi. Setiap komponen yg diambil dinyatakan “sukses” jika ternyata rusak, dan “gagal” jika ternyata komponen tsb baik (sebenarnya boleh juga definisinya dibalik!). Variabel random X didefinisikan sebagai banyaknya “sukses” dalam pengambilan 3 komponen tsb.
10
Ruang sampel bagi X adalah (S: sukses, G:gagal):
Outcome SSS SSG SGS SGG GSS GSG GGS GGG X Misalkan diketahui dari masa lalu, sebanyak 25% produksi komponen tersebut rusak (“S”). Jadi probabilitas 1 kali pengambilan menghasilkan rusak = probabilitas “sukses” = p= ¼, berarti probabilitas “gagal” = 1- ¼ = ¾ . Sebagai contoh probabilitas outcome= SSG p(SSG)=p(S)p(S)p(G)= ¼* ¼ * ¾ = 3/64, jadi untuk X=2, ada 3 outcome yg terkait : SSG, SGS, GSS, maka jika f(X=2) menyatakan probabilitas X=2, f (X=2) = 3*3/64 = 9/64.
11
Contoh (lanjutan). Dengan cara yg sama bisa diturunkan probabilitas untuk X=0,1 dan 3, dan hasilnya adalah fungsi distribusi probabilitas f(x) sbb: X f(X) 27/64 27/64 9/64 1/64 Variabel random X ini disebut variabel random binomial, sedangkan fungsi distribusinya f(x) disebut fungsi distribusi binomial, dan dituliskan sbb: f(x) = b(x;n,p) Untuk menegaskan bahwa probabilitas x ditentukan oleh banyak eksperimennya (n, dalam contoh di atas n=3), dan bergantung pada probabilitas sukses di tiap eksperimen (p). Jadi f(x=2) =b(2;3,0.25) = 9/64
12
Kasus distribusi binomial umum:
- dilakukan eksperimen sebanyak n kali pengambilan - dari n tsb, sebanyak x dikategorikan “sukses”, jadi sebanyak n-x adalah “gagal” - probabilitas “sukses” di tiap percobaan = p, berarti probabilitas “gagal “, q=1-p. Maka probabilitas terjadinya outcome dengan konfigurasi x “sukses” dan (n- x) “gagal” tertentu, adalah: P(SSS … GGG) = ppp….qqq = pxqn-x Sebab S ada x buah dan G sebanyak (n-x) buah. Tentu ada banyak konfigurasi lain yg juga memiliki x buah S dan (n-x) buah G. Sehingga probabilitas mendapatkan hasil eksperimen yg memiliki x buah S dan (n-x) buah G adalah: Cnx pxqn-x = b(x;n,p)
13
Contoh. Jawab. Misal kita definisikan “sukses” = tidak rusak, probabilitas “sukses”, p=3/4. Jadi probabilitas “gagal, q= 1-3/4 = ¼. Total percobaan ada n=4, jumlah yg tidak rusak, “sukses”, x=2. Jadi probabilitas 2 dari 4 komponen yg dijatuhkan tidak rusak diberikan oleh: Sifat dari b(x;n,p) sebagai fungsi distribusi probabilitas adalah: Karena seringkali kita memerlukan probabilitas untuk X dalam sebuah interval, misal P(X<r) atau P(a<X≤b) maka, dibuat tabel fungsi distribusi binomial kumulatif sbb:
14
Contoh. Probabilitas seorang pasien yg sakit suatu penyakit flu sembuh adalah 40%. Jikalau 15 orang diketahui telah tertular penyakit ini, berapakah probabilitasnya bahwa (a) paling tidak 10 orang sembuh, (b) antara 3 hingga 8 orang sembuh (c)tepat 5 orang sembuh? Jawab. Ini adalah proses Bernoulli. Probabilitas “sukses”, yaitu sembuh adalah p =0.4. Variabel random X menyatakan banyak orang yang “sukses” = sembuh, sedangkan total percobaannya adalah n=15. a) P (paling tidak 10 sembuh) = P(X≥10) =1- P(X<10)= =1- B(r=9;n=15,p=0.4) = 1 – = b) P (antara 3 sd 8 sembuh) = P(3≤X≤8) =P(X≤8) - P(X<3) = =B(r=8;n=15,p=0.4) - B(r=2;n=15,p=0.4) = = c) P (5 sembuh) = P(X=5) =P(X≤5) - P(X<5) = =B(r=5;n=15,p=0.4) - B(r=4;n=15,p=0.4) = =0.1859
15
Contoh. Probabilitas seorang pasien yg sakit suatu penyakit flu sembuh adalah 40%. Jikalau 15 orang diketahui telah tertular penyakit ini, (a) Berapakah rata-rata jumlah orang yg sembuh? (b) Menurut teorem Chebysev paling tidak sebanyak 75% kasus akan jatuh dalam interval μ -2 σ < X < μ +2 σ. Terapkan dalam kasus ini dan beri interpretasi. Jawab. a) Dalam kasus ini probabilitas sembuh, p=0.4, banyak percobaan, n=15, sehingga rata-rata jumlah orang yang sembuh μ = np = 15*0.4 = 6 orang b) Variansinya : σ2 = npq = np(1-p) = 15*(0.4)(1-0.4) = 3.6 dengan STD σ = 1.897, μ -2 σ = 6 -2(1,897) = dan μ +2 σ = 6 +2(1,897)=9.794. Artinya (menurut Chebysev) terdapat probabilitas paling tidak 75% pasien yg sembuh jumlahnya antara s/d atau dibulatkan antara 3 s.d 9.
16
Contoh. Diperkirakan 30% sumur di sebuah desa tercemar.Untuk memeriksa kebenaran hal tsb dilakukan pemeriksaan dengan secara acak mengambil 10 sumur. Jika perkiraan tsb benar, berapakah probabilitasnya tepat 3 sumur tercemar? Pertanyaan yg sama tapi lebih dari 3 sumur yg tercemar?
17
Jawab. Probabilitas 1 sumur tercemar p=0.3 (“sukses”), jadi probabilitas tidak tercemar (“gagal”) q=1-p = 1-0.3=0.7. Total pengambilan n=10 buah. a) Tepat 3 sumur tercemar, x=3. P(x=3;n=10,p=0.3)= B(r=3;n=10,p=0.3)-B(r=2;n=10,p=0.3) = – = (27%). b) Lebih dari 3 sumur tercemar x>3, P(x>3;n=10,p=0.3)= 1- P(x≤3;n=10,p=0.3)= = 1 – B(r=3;n=10,p=0.3) =1 – = = 35%
18
Soal. Soal yg sama. Misalkan ternyata dari 10 sampel yg diambil secara acak sebanyak 6 mengandung pencemaran. Pergunakanlah perhitungan probabilitas, untuk memberik komentar ttg kemungkinan hal spt terjadi, jikalau perkiraan semula benar.
19
(Distribusi Probabilitas Kontinu)
Distribusi Normal (Distribusi Probabilitas Kontinu)
20
Kurva Normal dan Variabel Random Normal
Distribusi probabilitas kontinu yang terpenting adalah distribusi normal dan grafiknya disebut kurva normal. Variabel random X yang distribusinya berbentuk seperti lonceng disebut variabel random normal. x
21
Sifat kurva normal, yaitu :
Kurva setangkup terhadap garis tegak yang melalui Kurva mempunyai titik belok pada Sumbu x merupakan asimtot dari kurva normal Seluruh luas di bawah kurva, di atas sumbu x adalah 1 (satu)
22
Distribusi Normal Variabel random X berdistribusi normal, dengan mean dan variansi mempunyai fungsi densitas
23
LUAS DIBAWAH KURVA NORMAL
Probabilitas distribusi kontinue adalah merupakan luas area di bawah garis kurva. Probabilitas suatu variabel dengan nilai antara a dan b adalah luas kurva yang dibatasi oleh garis a dan b. Luas yang tercakup dalam batas-batas tersebut pada tabel distribusi normal. Bila suatu distribusi adalah normal , maka jarak antara rerata dengan simpangan bakunya adalah sama. Luas area antara a-b a b
24
luas daerah di bawah kurva dinyatakan dengan :
x X1 X2
25
Distribusi Normal Standar (1)
apabila variabel X ditransformasikan dengan substitusi maka : ternyata substitusi menyebabkan distribusi normal menjadi , yang disebut distribusi normal standar.
26
Distribusi Normal Standar (2):
Karena transformasi ini, maka selanjutnya nilai ini dapat dihitung dengan menggunakan tabel distribusi normal standar.
27
Contoh: Hitung Luas Pergunakanlah tabel distribusi normal standard untuk menghitung luas daerah : Di sebelah kanan z=1.84 Antara z=-1.97 s/d z=0.86 Jawab. Ingat bahwa luas yg diberikan dalam tabel distribusi normal kumulatif adalah luas dari z=-∞ s/d z0 tertentu: P(z<z0). P(z>1.84) = 1 – P(z≤1.84) = = P(-1.97 <z<0.86) = P(z<0.86) – P(z<-1.97) = – =
28
Contoh: Cari z Carilah nilai z=k di distribusi normal standard sehingga P(Z>k) = P(k<z<-0.18) =0.4197 Jawab: P(Z>k) = berarti P(Z<k) = 1- P(z>k) = 1 – = Dari tabel terbaca luas ke kiri = adalah untuk z=0.52. b) P(k<z<-0.18) = P(z<-0.18) – P(z<k) = = – P(z<k) = Jadi P(z<k) = = Dari tabel z = -2.37
29
Contoh: Luas di bawah kurva normal non standard
Variaber X terdistribusi normal dengan mean 50 dan standard deviasi =10. Carilah probabilitas untuk menemukan X bernilai antara 45 dan 62? Jawab. Dalam soal ini μ = 50 dan σ=10. x1 = 45 dan x2 =62 Pertama kita mapping x ke z (melakukan normalisasi atau standardisasi): z1 = (x1 -μ)/σ z1 = (45-50)/10 = -0.5 z2 = (x2 -μ)/σ z2 = (62-50)/10 = 1.2 Sehingga P(45 <x< 62) = P(-0.5<z<1.2) P(-0.5<z<1.2) = P(z<1.2) – P(z<-0.5) = =0.5764
30
Memakai Distribusi Normal Dalam Arah Kebalikan
Diketahui luas dibawah distribusi normal yg diinginkan yang terkait dengan besar probabilitas, ingin dicari nilai variabel random X yg terkait. Contoh. Misalkan distribusi normal memiliki μ=40 σ=6, carilah nilai x0 sehingga: P(x<x0) = 45% P(x>x0)=14% Jawab. Kita mulai dengan mencari nilai Z yg sama luasnya. P(z<z0) = 45% = 0.45 dari tabel z0 = -0.13 z0 = (x0-μ)/σ x0 = μ + σz0 = 40 +6*(-0.13) = 39.22
31
Memakai Distribusi Normal Dalam Arah Kebalikan
Jawab. b) Kita mulai dengan mencari nilai Z yg sama luasnya. P(z>z0) = 14% P(z<z0) = 1- P(z>z0) = = 0.86 P(z<z0) = 0.86 dari tabel z0 = 1.08 z0 = (x0-μ)/σ x0 = μ + σz0 = 40 +6*(1.08) = 46.48
32
PENERAPAN KURVA NORMAL
Distribusi Probabilitas Normal Bab 9 PENERAPAN KURVA NORMAL Contoh Soal: PT GS mengklaim berat buah mangga “B” adalah 350 gram dengan standar deviasi 50 gram. Bila berat mangga mengikuti distribusi normal, berapa probabilitas bahwa berat buah mangga mencapai kurang dari 250 gram, sehingga akan diprotes oleh konsumen.
33
PENERAPAN KURVA NORMAL
Distribusi Probabilitas Normal Bab 9 PENERAPAN KURVA NORMAL Jawab: Transformasi ke nilai z AP(x< 250); P(x=250) = ( )/50=-2,00 Jadi P(x<250)=P(z<-2,00) Lihat pada tabel luas di bawah kurva normal P(z<-2,00)=0,4772 Luas sebelah kiri nilai tengah adalah 0,5. Oleh sebab itu, nilai daerah yang diarsir menjadi 0,5 – 0,4772=0,0228. Jadi probabilitas di bawah 250 gram adalah 0,0228 (2,28%). Dengan kata lain probabilitas konsumen protes karena berat buah mangga kurang dari 250 gram adalah 2,28%.
34
PENERAPAN KURVA NORMAL
Distribusi Probabilitas Normal Bab 9 PENERAPAN KURVA NORMAL Contoh Soal: PT Work Electric, memproduksi Bohlam Lampu yang dapat hidup 900 jam dengan standar deviasi 50 jam. PT Work Electric ingin mengetahui berapa persen produksi pada kisaran antara jam, sebagai bahan promosi bohlam lampu. Hitung berapa probabilitasnya!
35
PENERAPAN KURVA NORMAL
Distribusi Probabilitas Normal Bab 9 PENERAPAN KURVA NORMAL Jawab: P(800<X<1.000)? Hitung nilai Z Z1 = ( )/50 = -2,00; Z2 = ( )/50 = 2,00 Jadi: P(800<X<1.000) =P(-2,00<Z<2,00); P(-2,00<Z) = 0,4772 dan P(Z>2,00) = 0,4772 Sehingga luas daerah yang diarsir adalah = 0,4772+0,4772= 0,9544. Jadi P(800<X<1.000) = P(-2,00 < Z<2,00) = 0,9544. Jadi 95,44% produksi berada pada kisaran jam. Jadi jika PT Work Electric mengklaim bahwa lampu bohlamnya menyala jam, mempunyai probabilitas benar 95,44%, sedang sisanya 4,56% harus dipersiapkan untuk garansi.
36
Hubungan antara Distribusi Binomial dan Distribusi Normal
Jika N cukup besar dan jika tak satu pun dari p atau q sangat dekat dengan nol maka distribusi binomial dapat didekati atau diaproksimasi oleh sebuah distribusi normal dengan variabel terstandarisasi yang dirumiskan sebagai: Pendekatan ini akan semakin baik seiring dengan semakin bertambah besarnya N. Dalam praktiknya, pendekatannya akan sangat bagus jika Np dan Nq kedua-duanya lebih besar daripada 5.
37
Contoh Penerapan Distribusi Normal
Sebuah perusahaan bolam lampu mengetahui bahwa umur lampunya (sebelum putus) terdistribusi secara normal dengan rata-rata umurnya 800 jam dan standard deviasinya 40 jam. Carilah probabilitas bahwa sebuah bolam produksinya akan: Berumur antara 778 jam dan 834 jam Berumur kurang dari 750 jam atau lebih dari 900 jam Jawab. μ= 800 σ=40. P(778<x<834) x1=778 z1 = (x1-μ)/σ = ( )/40 = -0.55 x2=834 z2 = (x2-μ)/σ = ( )/40 = 0.85 P(778<x<834) = P(-0.55<z<0.85) = P(z<0.85)-P(z<-0.55) = – =
38
Contoh Penerapan Distribusi Normal
b) Berumur kurang dari 750 jam atau lebih dari 900 jam μ= 800 σ=40. P(x< 750 atau x>900) x1=750 z1 = (x1-μ)/σ = ( )/40 = -1.25 x2=900 z2 = (x2-μ)/σ = ( )/40 = 2.5 P(x< 750 atau x>900) = P(z<-1.25) + P(z>2.5) = P(z<-1.25) + 1- P(z<2.5) = 1 + P(z<-1.25) - P(z<2.5) = =
39
Soal: Dalam suatu ujian akhir Matematika, mean nilai adalah 72 sementara deviasi standarnya adalah 15. tentukan angka-angka standar (yaitu nilai-nilai dalam satuan deviasi standar) dari siswa-siswa yang memperoleh nilai (a) 60 (b) 93 (c) 72 Sebuah koin yang seimbang dilemparkan sebanyak 500 kali. Carilah probabilitas bahwa selisih banyaknya kemunculan tanda gambar dengan 250 kali adalah (a) tidak lebih dari 10 (b) tidak lebih dari 30
40
Soal Diameter ball-bearing yg diproduksi sebuah pabrik memiliki mean 3cm dengan standard deviasi cm. Pembeli hanya mau menerima jikalau ball bearingnya memiliki diameter 3.0±0.01cm. a) berapakah persenkah dari produksi pabrik tersebut yg tidak bisa diterima pembeli? b) jikalau dalam sebulan pabrik tsb memproduksi ball-bearing, berapa banyak yg harus dibuang tiap bulan karena ditolak pembeli? Sebuah pengukur diameter bola besi dipasang secara otomatis dalam sebuah pabrik. Pengukur tsb hanya akan meloloskan diameter bola 1.50±d cm. Diketahui bahwa bola produksi pabrik tersebut memiliki diameter yg terdistribusi normal dengan rata-rata 1.50 dan standard deviasi 0.2 cm. Jikalau diinginkan bahwa 95% produksinya lolos seleksi berapakah nilai d harus ditetapkan?
41
Soal Rata-rata nilai kuliah statistik diketahui 65 dengan standard deviasi 15. a) Jikalau diinginkan 15% murid mendapat nilai A dan diketahui distribusi nilai normal, berapakah batas bawah nilai agar mendapat A? (b) Selanjutanya diinginkan yg mendapat B adalah sebanyak 25%. Berapakah batas bawah B? (c) Seandainya diinginkan yg tidak lulus paling banyak 25%, berapakah batas bawah agar siswa lulus?
Presentasi serupa
© 2024 SlidePlayer.info Inc.
All rights reserved.