Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

CCM110 MATEMATIKA DISKRIT Pertemuan-9, Metode Pembuktian

Presentasi serupa


Presentasi berjudul: "CCM110 MATEMATIKA DISKRIT Pertemuan-9, Metode Pembuktian"— Transcript presentasi:

1 CCM110 MATEMATIKA DISKRIT Pertemuan-9, Metode Pembuktian
Drs.Holder Simorangkir, M.Kom Prodi Teknik Informatika Fakultas Ilmu Komputer

2 KEMAMPUAN AKHIR YANG DIHARAPKAN
Mahasiswa dapat mengaplikasi bentuk-bentuk pembuktian dalam menyelesaikan permasalahan.

3 Metode Pembuktian Dalam Matematik.
Ada 4 macam pembuktian yang sering digunakan dalam matematika yaitu : a. Bukti Langsung b. Bukti tidak langsung c. Metode Kontradiksi d. Bukti Langsung. Metoda pembuktian yang diperlukan untuk menyatakan kebenaran suatu hasil matematika yang berbentuk teorema, implikasi, biimplikasi dll.

4 Buktikan bahwa jika x ganjil, maka x2 juga bilangan ganjil.
Contoh : Buktikan bahwa jika x ganjil, maka x2 juga bilangan ganjil. Jawab : x bilangan ganjil, x = 2n + 1, n bilangan bulat. akibatnya x2 = ( 2n + 1 )2 = 4n2 + 4n + 1 = 2(2n2 + 2n) + 1 2n2 = bulat 2n = bulat jadi 2n2 + 2n = bulat jadi 2(2n2 + 2n) + 1 = ganjil, x2 ganjil.

5 Bukti Tak Langsung p  q Ξ ~ q  ~ p
Suatu implikasi dapat dibuktikan secara tak langsung dari kontra positip, karena implikasi ekivalen dengan kontrapositipnya. p  q Ξ ~ q  ~ p

6 Contoh : Jwb : Implikasi : x.y ganjil  x ganjil dan y ganjil
Jika hasil kali dua bilangan adalah ganjil maka kedua bilangan tersebut ganjil. Jwb : Implikasi : x.y ganjil  x ganjil dan y ganjil Kontra positip : x genap atau y genap  x.y genap x = 2n = genap, n bilangan asli Maka x.y = 2n.y = 2(n.y) = genap karena kelipatan 2 Dengan demikian kontrapositipnya benar sehingga Implikasinya juga benar.

7 Bukti dengan Kontradiksi :
Digunakan sebagai alternatif terakhir dalam kasus bukti langsung dan tak langsung tidak dapat digunakan.  q a. Kita misalkan ~ q benar, artinya pemisalan ini akan menghasilkan sesuatu yang bertentangan dengan sesuatu yang kita anggap benar. Karena konsistensi dalam matematika, berarti ~ q salah sehingga ~ (~ q) benar.

8 Contoh : Jika x2 = 2 maka x bukan bilangan rasional. x2 = 2  x bukan rasional Misalkan x bilangan rasional maka x = m/n, m = bilangan bulat, relatif prima n = bilangan asli, relatif prima Relatif prima berarti bahwa m dan n tidak mempunyai faktor persekutuan selain satu.( contoh 2/4 dan 3/6 di tulis ½ ) x2 = 2 = m2/n2 2n2 = m2, n2 genap maka m2 genap sehingga m genap Karena m dan n relatif prima maka n harus ganjil (1).

9 m genap maka m = 2k, k = bilangan bulat
m2 = 4k2 juga genap, padahal 2n2 = m2 , jadi 2n2 = 4k2 atau n2 = 2k2 berarti n2 genap sehingga n genap (2). Hasil (1) dan (2) bertentangan hal ini disebabkan oleh pengandaian bahwa x bilangan rasional. Jadi tidak mungkin terdapat bilangan rasional yang kuadratnya sama dengan 2 ( terbukti )

10 Bukti Dengan Induksi Matematika
Misalkan P(n) suatu pernyataan tentang bilangan asli n. Kebenaran P(n) untuk semua bilangan asli n dibuktikan dengan cara menunjukkan bahwa : 1. P(1) benar. 2. Andaikan P(n) benar maka P(n+1) , juga benar.

11 Buktikan ! P(n) : x2n-1 + y2n-1 habis dibagi oleh x + y
CONTOH : Buktikan ! P(n) : x2n-1 + y2n-1 habis dibagi oleh x + y jwb : untuk n = 1, maka P(1) habis dibagi x + y  P(1) benar Misalkan P(n) benar, maka P(n+1) juga benar. P(n+1) = x2(n+1)-1 + y2(n+1)-1 = x2n+1 + y2n+1 = x2 x2n-1 + y2 y2n-1 = x2 x2n-1 + x2 y2n-1 - x2 y2n-1 + y2 y2n-1 = x2 (x2n-1 + y2n-1) - y2n-1(x2 - y2)

12  P(n+1) habis dibagi x+y
Karena P(n) benar maka suku pertama habis dibagi x+y Karena x2 - y2 = (x+y)(x-y) maka suku kedua juga habis dibagi x+y  P(n+1) habis dibagi x+y

13 Tugas perseorangan : Kumpulkan masing-masing 2 soal dan penyelesaiannya tentang pembuktian langsung, tak langsung dan induksi matematik Tugas kelompok : Presentasikan pada pertemuan ke 6 sebuah persoalan dan penyelesaiannya “pembuktian dengan kontradiksi” ====== T E R I M A K A S I H ======

14


Download ppt "CCM110 MATEMATIKA DISKRIT Pertemuan-9, Metode Pembuktian"

Presentasi serupa


Iklan oleh Google