Upload presentasi
Presentasi sedang didownload. Silahkan tunggu
Diterbitkan olehSugiarto Chandra Telah diubah "6 tahun yang lalu
1
Indonesia Geothermal Energy Human Resources Development Strategy
Masyarakat Energi Terbarukan Indonesia (The Indonesia Renewable Energy Society) Gedung BPSDM Lantai 5 Jl. Gatot Subroto Kav.49, Jakarta Ph: , ; http: // Indonesia Geothermal Energy Human Resources Development Strategy By Dr. Surya Darma (GOI HR Board/Chairman of METI) Southeast Asia Symposium on Geothermal Offenburg - Germany, 28 February 2018
2
Outline Background Geothermal Energy Potential in Indonesia
Characteristics of the Indonesian Geothermal Industry Government Plans and National Energy Policy (NEP) The HRD Program Strategy Geothermal developers, operators and industry stakeholders Strong Leadership and Coordination Approach
3
Background
4
Background Geothermal Potential in Indonesia compose of MW resources (speculative and and reserves is about MW (Prabable, possible and proven reserves) The installed capacities is about 1.86,5 MW (.6.4% from its potential resources and reserves); The most recent geothermal development plan of Indonesia’s Ministry of Energy and Mineral Resources (MEMR) shows geothermal generation capacity increasing from the 1,400 MW (2015) to around 4,000 MW by 2020 and more than 7,000 MW by 2025. Indonesia requires 1,300 to 2,200 additional geothermal trained engineers and scientists by 2020, and a further 500 to 800 by Many additional staff are required in other disciplines, including an assessed 14,000 technicians and trades people who will require geothermal training. To ensure adequate Human Resources and capability to support the development plans for geothermal electricity generation in Indonesia, it has been agreed to apply the “Make – Fix – Buy” Strategy. The HRD Programme is designed to secure staff and skills to support the development of electricity generation from Indonesia’s widespread geothermal resources. The involvement of many different players, regions and different aspects meaning that strong leadership and a coordinated approach is required if targets are to be achieved
5
Geothermal Energy Potential in Indonesia
6
Geothermal Potential in Indonesia Potential Energy Potensi (MWe)
No Islands Noumber of Location Potential Energy Potensi (MWe) Installed Capacities Resources (MWe) Reserves (MWe) Spekulative Hipotetic Probable Possible Proven 1 Sumatera 97 2.893 1.935 5.097 930 917 452 2 Jawa 73 1.410 1.689 3.949 1.373 1.865 1.224 3 Bali 6 70 22 122 110 30 4 Nusa Tenggara 27 225 409 848 15 12,5 5 Kalimantan 14 152 17 13 0 Sulawesi 78 1.221 314 1.242 80 140 120 7 Maluku 33 560 91 775 8 Papua 75 Total 331 6.596 4.477 12.046 2.493 2.967 1.808,5 *) 11.073 17.506 Sources : Badan Geologi Kementerian ESDM, 2016 *) Status : Juni 2017
7
1.808,5 MW 70 WKP 8,17 GWh USD 0,61 Miliar CURRENT STATUS (June 2017)
Installed Capacities Potential 1.808,5 MW 38 PLTP pada 12 lokasi, 10 WKP Utilzation: 10,3% of Indonesian reserves Resources MW Reserves MW Badan Geologi, Desember 2016 Geothermal Working Area (WKP) Electricity Production 70 WKP Exiisting 19 WKP New 51 WKP 8,17 GWh 70% dari target 11,6 GWH di tahun 2017 (data per Agustus 2017) Investament USD 0,61 Miliar 54,8% dari target USD 1,104 M di tahun 2017 (data per Okt 2017) Regulation (2017) UU No.21 Tahun 2014 PP 7 Tahun 2017 Pemanfaatan Tidak Langsung Permen ESDM No. 21/2017 Limbah Lumpur dan Sumur Bor Permen ESDM No. 23/2017 Bonus Produksi Peraturan Menteri ESDM No. 36/2017 PSP dan PSPE Peraturan Menteri ESDM No. 37/2017 WKP
8
Geothermal Plant Installed Capacities (June 2017)
No. Geothermal Area Plant Location Pengembang/ Operator Kapasitas Turbin Kapasitas Total (MW) 1 Sibayak – Sinabung, SUMUT Sibayak PT. Pertamina Geothermal Energy 2 x 5 MW; 2 MW(monoblok) 12 2 Cibeureum – Parabakti, JABAR Salak Chevron Geothermal Salak, Ltd 3 x 60 MW; 3 x 65,6 MW 377 3 Pangalengan, JABAR Wayang Windu Star Energy Geothermal Wayang Windu 1 x 110 MW; 1 x 117 MW 227 Patuha PT Geo Dipa Energi 1 x 55 MW 55 4 Kamojang – Darajat, JABAR Kamojang 1 x30 MW; 2 x 55 MW; 1 x 60 MW; 1 x 35 MW 235 Darajat Chevron Geothermal Indonesia, Ltd 1 x 55 MW; 1 x 94 MW; 1 x 121 MW 270 5 Dataran Tinggi Dieng, JATENG Dieng PT. Geo Dipa Energi 1 x 60 MW 60 6 Lahendong – Tompaso, SULUT Lahendong 6 x 20 MW 120 7 Waypanas – LAMPUNG Ulubelu 4 x 55 MW 220 8 Ulumbu - NTT Ulumbu PT. PLN (Persero) 4 x 2,5 MW 10 9 Mataloko - NTT Mataloko 1 x 2,5 MW 2,5 Sibual-Buali - SUMUT Sarulla Sarulla Operation Ltd. 2 x 110 MW TOTAL 1.808,5
9
Current Status OCTOBER 2017 PLTP SIBAYAK: 12 MW PLTP SARULLA: 220 MW
PLTP LAHENDONG: 120 MW PLTP GUNUNG SALAK: 377 MW PLTP ULUBELU: 220 MW PLTP WAYANG WINDU: 227 MW PLTP KAMOJANG: 235 MW PLTP MATALOKO: 2,5 MW PLTP PATUHA: 55 MW PLTP DIENG: 60 MW PLTP DARAJAT: 270 MW PLTP ULUMBU: 10 MW
10
Government Plans and National Energy Policy (NEP)
11
Power Condition and Target by 2025 – Mandated by NEP
Current year Target by 2025 Electricity (Installed) 58 GW 115 GW Energy Consumption 0,8 TOE/kapita 1,4 TOE/kapita Electricity Consumption 776 KWh/kapita 2.500 KWh/kapita
12
Indonesia second largest producers - bigger than Phillippine*
ROAD MAP OF GEOTHERMAL DEVELOPMENT Additional Capacity in 2017: PLTP Sarulla Unit MW (Sumut) PLTP Ulubelu Unit MW (Lampung) PLTP Karaha Unit MW (Jawa Barat)* PLTP Sorik Marapi (Modular) Unit MW (Sumut)* * 2018 Indonesia The Biggest Producers in the World more than USA* Indonesia second largest producers - bigger than Phillippine* *Asumsi: Filipina (1.870 MW) dan Amerika (3.450 MW) tidak mengalami penambahan kapasitas
13
Indonesian Milestone of Geothermal Technology Implementation
Specified steam characteristics in each location becomes OPPORTUNITIES for the application of various types of Power Plant technologies 7.241,5 MW 3.109,5 MW 1.438,5 MW 852 MW 85 MW Road Map of Geothermal Development 30 MW 1st Power Plant Kamojang SINGLE FLASH STEAM Reliable Broadly used Efficient Economic SMALL SCALE & WELL HEAD GENERATION Proven Quick Mobile A Solution for Geographical Obstacles DOUBLE FLASH STEAM & BINARY CYCLE Big Potential Continued Development EGS ?? 1983 1990 2005 2015 2020 2025 TECHNOLOGY DEVELOPMENT Single Flash Steam, still to be backbone for next 10 years development. Small scale & WHG begin to develop, especially for Eastern part of Indonesia and Exploration phase areas Double flash & Binary still on further study
14
70 Areas of Geothermal Development Planning
NAD 3 WKP Jaboi: 10 MW Seulawah Agam: 110 MW Gn.Geureudong: 55 MW SUMUT 5 WKP Sibayak – Sinabung: - Sibual – Buali: 330 MW (Sarulla 1); 260 MW (Sarulla 2) Sipaholon Ria-ria: 20 MW Sorik Marapi: 240 MW Simbolon Samosir: 110 MW JATIM 7 WKP Blawan – Ijen: 110 MW Gn. Iyang Argopuro: 55 MW Telaga Ngebel: 165 MW Arjuno Welirang: 110 MW Gunung Pandan: 40 MW Gunung Wilis: 20 MW Songgoriti: 20 MW SULUT 2 WKP Kotamobagu: 80 MW Lahendong-Tompaso: 50 MW JAMBI 2 WKP Sungai Penuh: 145 MW Graho Nyabu: 110 MW MALUT 4 WKP Jailolo: 20 MW Songa Wayaua: 10 MW Gn.Hamiding: 20 MW Telaga Ranu: 5 MW GORONTALO 1 WKP Suwawa: 20 MW SUMSEL 3 WKP Lumut Balai: 285 MW Rantau Dedap: 220 MW Danau Ranau: 40 MW SULAWESI TENGGARA 1 WKP Lainea: 20 MW SUMBAR 3 WKP Gn Talang-Bukit Kili: 20 MW Liki Pinangawan: 220 MW Bonjol: 60 MW BANTEN 2 WKP Kaldera Danau Banten: 110 MW G. Endut: 40 MW BENGKULU 3 WKP Tmbg Sawah-Hululais: 340 MW Kepahiang: 110 MW Tanjung Sakti: 55 MW SULTENG 2 WKP Marana: 20 MW Bora Pulu: 40 MW BALI 1 WKP Tabanan: 65 MW LAMPUNG 5 WKP Gn.Rajabasa: 220 MW Sekincau: 220 MW Waypanas – Ulubelu: - Danau Ranau: 110 MW Way Ratai: 55 MW JABAR 10 WKP Cibeureum–Parabakti: - Cibuni: 10 MW Cisolok Cisukarame: 45 MW Gn. Tampomas: 45 MW Gn. Tgkuban Perahu: 60 MW Kamojang: 55 MW Darajat: 270 MW Karaha Cakrabuana: 50 MW Pangalengan: 110 MW (Patuha) Pangalengan: 173 MW (Wayang Windu unit 3&4) G. Ciremai: 110 MW Gn. Gede Pangrango: 55 MW Gn. Galunggung: 110 MW MALUKU 1 WKP Tulehu: 20 MW Wapsalit: - Selama ini penyediaan energi nasional masih didominasi oleh energi fosil yang disubsidi, sementara energi terbarukan yang low carbon belum banyak dimanfaatkan; Potensi penghematan energi di setiap sektor relatif besar; Potensi energi baru dan terbarukan besar sehingga pemanfaatannya akan menciptakan lapangan kerja, dan dapat mengurangi penurunan emisi Gas Rumah Kaca; Presiden RI pada Forum G-20 di Pittsburgh, USA tahun 2009 dan pada COP 15 di Copenhagen menyampaikan bahwa Indonesia bisa menurunkan emisi sebesar 26% dengan upaya sendiri dan bahkan bisa mencapai sebesar 41% dengan bantuan negara maju hingga tahun Telah disusun Rencana Aksi Nasional Penurunan Emisi Gas Rumah Kaca (RAN-GRK), sebagaimana Perpres No. 61 Tahun 2011 bidang Energi dan Transportasi memiliki target penurunan emisi (26%)=0,038 giga ton CO2e, untuk target penurunan emisi (41%)=0,056 giga ton CO2e. (Komitmen penurunan emisi gas rumah kaca nasional dari sektor energi sebesar 30 juta ton pada tahun 2020 (Perpres 61/2011) Penerapan mandatori penyediaan energi terbarukan dan komitmen efisiensi pemanfaatan energi menjadi kunci utama dalam mencapai kedaulatan, kemandirian dan ketahanan energi. Ketahanan dan Kemandirian Energi menentukan masa depan Indonesia. Peran EBT sangat penting untuk mendukung tercapainya ketahanan energi, dan kemandirian energi. Potensi dan peranan energi konvensional (minyak dan gas bumi serta batubara) Indonesia di masa yang akan datang menurun sehingga ketergantungan terhadap jenis energi ini yang harganya akan semakin mahal harus dihindari. Dengan pola konsumsi energi seperti saat ini dan belum diimbangi dengan suplai energi yang cukup, maka Indonesia berpotensi untuk menjadi Negara Net-Energy Importer pada tahun 2019. JATENG 6 WKP Baturaden: 180 MW Dataran Tinggi Dieng: 265 MW Guci: 55 MW Gn. Ungaran: 55 MW Candi Umbul Telomoyo: 55 MW Gunung Lawu : 110 MW NTB 2 WKP Hu'u Daha: 20 MW Sembalun: 20 MW NTT 5 WKP Atadei: 10 MW Sokoria: 30 MW Ulumbu: 40 MW (unit 5) Mataloko: 20 MW Oka Ile Ange: 10 MW Gunung Sirung: 5 MW Keterangan: Program FTP II dan 35 GW Program FTP II Program 35 GW
15
The HRD Programme Strategy
16
Key HR needs are addressed by the HRD Programme
The HRD Programme is designed to secure staff and skills to support the development of electricity generation from Indonesia’s widespread geothermal resources It is the third stage of a programme comprising: A Human Resource Development “Needs Assessment”, A Geothermal Human Resource Development Strategy A Geothermal Human Resource Development Programme (HRD Programme) designed to execute the strategy The work has been carried out for the Indonesian Government, in close consultation with geothermal industry stakeholders and with the support of New Zealand’s Ministry of Foreign Affairs and Trade The development team was led by East Harbour Energy
17
Key HRD needs addressed in the Programme
Government geothermal development targets are very ambitious and HR (and drilling) requirements to meet them very challenging “Smoothing” the resource development rate will make plans and staff levels more achievable, and allow sustainable career paths The geothermal sector’s public profile needs to be raised so that the sector is seen as a clear career choice Continuity of employment and opportunities for career development require a firm, bankable, pipeline of development projects The industry will benefit from increased use of international expertise, while developing Indonesian capability; this directly hired and through external consultants/service providers New organisations to drive HR development are required, and the roles and responsibilities of all industry stakeholders, including INAGA and APPMGPBI, must be clear; key to effective HRD Programme leadership
18
Staffing the development programme
The project scope included No “sacred cows” - anything is possible/considered Large electricity opportunities Energy management initiatives Delivery of solutions Key issues driving the Energy Assessment included: The belief that a lack of firm energy supply was holding back investment in the region. The identification of the need for stable energy prices to maintain and encourage growth in the region The realisation that local energy resources were not being maximised to deliver growth. The HRD Programme is based on the “new low” development profile The key is seen as “steady growth” rather than “boom and bust”, in particular for HR resources and drilling 19
19
Additional skilled people required
Scientists, engineers, technicians and trades people in development and operating companies (operational staff are additional) Higher initial development rates would mean an unsustainable peak
20
New people required Based on “new low” development profile
Category By 2017 By 2019 By 2020 By 2025 Additional engineers and scientists 1,600 2,400 3,250 Technicians/trades requiring training 4,900 8,400 7,300 7,800 Staff turnover requiring training 8%/year Cumulative additional engineers/scientists for training 2,000 3,500 3,800 6,300 Trainers required - lecturers 50 25 28 Trainers required – research assistants 53 27 30 Based on “new low” development profile Eliminating (largely) the unachievable peak in numbers associated with previous development forecasts
21
The HRD Programme Strategy
The HRD Programme encompasses 20-initiatives designed to provide the required personnel and skills. Three key themes: Enhanced leadership and coordination Lifting the profile of the sector Implementing a co-ordinated HRD Programme based on a “make-fix-buy” approach: Fix: Train experienced and qualified recruits in geothermal technologies Buy: Identify and recruit good (preferably geothermally experienced people) from Indonesia and overseas Make: Train and develop skilled people from school graduates Buy and fix primarily targets short-term needs, but will also be an important long-term approach Make is the primary long-term solution The combination will lead to growing Indonesian self-sufficiency
22
Characteristics of the Indonesian Geothermal Industry
23
The Industry Stakeholders
Government: i.e., the Ministries and relevant agencies of the national government, the provinces, regencies and cities of 542 autonomous regions (34 provinces, 410 regencies and 98 municipalities). Developers: SOEs and private companies, both national and international. Utilities: PLN – single buyer of electricity for geothermal developers. Financial Institutions: are significant stakeholders in the process. Relevant Geothermal Related Parties: academia, industry organizations (INAGA, IRES/METI & others) and influential newspapers and business journals.
24
Strong Leadership and Coordination Approach
25
Bappenas Badiklat BKPM MEMR DGEBTKE
Construction/ Service companies BKPM MEMR Bappenas APPMGPBI Indonesian consultants International aid donors DGEBTKE Badiklat Regional geothermal regulators and other agencies (e.g. MOF & SMI) Private and state owned enterprise developers and operators Geothermal HR Development Programme Board (GHRDPB) Directorate of Geothermal EBTKE INAGA Various international aid advisory boards Geothermal Education and Training Coordinating Group (GETCG) & Scholarship Committee (GSC) Geothermal Sector Profile Raising Committee (GSPRC) Mentoring Committee (MC) Private and state own enterprise developers, operators and government officers Geothermal Profession (Man Power) Certification Institution (LSPGPPB, Dll) Technician and university auditing & university curriculum review STEM Pusdiklat Geologi Pusdiklat MIGAS Pusdiklat KEBTKE Universities and training providers (national and international)
26
Email: Suryadarma.za@gmail.com
Thank You for Your Attentions
27
Kebijakan Pengusahaan Panas Bumi
UU 30/2007 tentang Energi UU 21/2014 tentang Panas Bumi Tahun 2025 PP 79/2014 tentang KEN 7.241,5 MW Perpres 22/2017 tentang RUEN Panas Bumi Perpres 4/2010e FTP II Permen ESDM 40/2014 51 PLTP (4.825 MW)
28
SOE ACTIVE ROLE DEVELOPING GEOTHERMAL IN EACH COUNTRY
There are several State-own Enterprise Geothermal Developers. Such SOE developers are playing very active role in developing geothermal energy in each country. Costa Rica El Salvador Mexico Kenya Indonesia Philippines Italy Iceland ICE 207 MW LaGeo CFE KenGen, GDC Pertamina, Geo Dipa & PLN ENEL PNOC-EDC Reykjavik Energy, NPC 1,169 MW 396 MW 796 MW 204 MW 1,017 MW 594 MW 639.5 MW (Note) ENEL was privatized in 1999, and PNOC-EDC was privatized in 2006. 29
29
KEY FACTOR FOR GEOTHERMAL DEVELOPMENT
Geothermal development needs nation’s comprehensive development ability such as; a. Technology b. Finance c. Policy (Governmental strong will)
30
KEBIJAKAN PENGEMBANGAN PANAS BUMI
INSENTIF DALAM PENGUSAHAAN PANAS BUMI TAX ALLOWANCE FASILITAS BEA MASUK PEMBEBASAN PBB Peraturan Pemerintah No 18 Tahun 2015 Peraturan Menteri ESDM No Tahun 2015 Peraturan Menteri Keuangan No 89 Tahun 2015 Fasilitas: Pengurangan PPh Neto 30% dari nilai investasi selama 6 tahun (investment tax credit) Penyusutan dan amortisasi dipercepat Pengenaan PPh Dividen 10% Kompensasi Kerugian 5-10 tahun Panas Bumi: KBLI 06202 Min. Investasi: Rp 100 Milyar Peraturan Menteri Keuangan No 177 Tahun 2007 Peraturan Menteri Keuangan No 142 Tahun 2015 Peraturan Menteri Keuangan No 107 Tahun 2016 Pengoperasian barang dan mesin pada pengusahaan Panas Bumi Syarat: Barang belum dapat diproduksi di dalam negeri Barang sudah diproduksi di dalam negeri namun belum memenuhi spesifikasi yang dibutuhkan Barang sudah diproduksi di dalam negeri namun jumlahnya belum mencukupi kebutuhan industri Peraturan Menteri Keuangan No 172 Tahun 2016 Pengurangan PBB atas tubuh bumi sampai 100% untuk tahap Eksplorasi Fasilitas dapat diperoleh untuk pemegang IPB selama 5 tahun dan perpanjangan 2 tahun Dimulai tahun 2017
31
KEBIJAKAN PENGEMBANGAN PANAS BUMI DALAM PENGUSAHAAN PANAS BUMI
PENERAPAN KEBIJAKAN DALAM PENGUSAHAAN PANAS BUMI No. Uraian WKP Sebelum UU No.27/2003 WKP Setelah UU No.27 Tahun 2003 UU No.21 Tahun 2014 1 Struktur Pengusahaan JOC dan ESC Izin Usaha Pertambangan Panas Bumi (IUP) Izin Usaha Ketenagalistrikan untuk Umum (IUKU) Izin Panas Bumi (IPB) 2 Pola Pengusahaan Total project dan Partial project Total project 3 Bagian Pemerintah 34% dari Net Operating Income (NOI) termasuk semua pajak-pajak kecuali pajak perseorangan Bagian Pemerintah berupa pajak dan PNBP 4 Manajemen Proyek Pertamina (JOC) PLN (ESC) Pemegang IUP Pemegang IPB
32
KEBIJAKAN PENGEMBANGAN PANAS BUMI
Fast Track Program (FTP) II (51 proyek) Jangka Waktu s.d. 2025 Pengembangan Lapangan Eksisting yang Sudah Berproduksi : MW Pengembangan Lapangan Eksisting yang Belum Berproduksi : 1520 MW Pengembangan WKP Baru : 2900 MW Total Pengembangan Panas Bumi MW Program 35 GW (16 proyek) Jangka Waktu: Konstruksi : MW Eksplorasi : 635 MW Pengadaan : MW Total Pengembangan Panas Bumi MW 7 GW Program (11 projects) Konstruksi : MW Commercial Operation Date : MW Total Development MW Adapun Roadmap dari pengembangan energi terbarukan sampai dengan tahun 2015 dapat dilihat pada tayangan. Untuk biomassa dapat dibagi menjadi 2, yaitu bahan bakar nabati (BBN) dan biomassa sampah. Kapasitas BBN pada tahun 2011 sekitar 0,4 Juta KL dan akan dikembangkan mencapai 11,8 Juta KL pada tahun Sedangkan biomassa sampah pada awal tahun ini sebesar 520 MW, akan dikembangkan mencapai MW. Adapun kapasitas panas bumi pada tahun 2011 sekitar MW dan akan dikembangkan mencapai MW pada tahun 2015. Sedangkan kapasitas energi air pada tahun 2011 sebesar MW, akan dikembangkan mencapai MW pada tahun 2015. Disamping itu, kapasitas energi laut pada tahun 2011 sekitar 0,002 MW dan akan dikembangkan mencapai 2,2 MW pada tahun 2015. Sedangkan kapasitas energi matahari pada tahun 2011 sebesar 24 MW akan dikembangkan mencapai 773 MW pada tahun 2015. Untuk energi angin dan Energi Terbarukan lainnya, kapasitas pada tahun 2011 sebesar 3 MW dan akan dikembangkan mencapai 737 MW pada tahun 2015.
33
KEBIJAKAN PENGEMBANGAN PANAS BUMI
Daftar Proyek PLTP yang Masuk dalam Crash Program MW Tahap II (berdasarkan Permen ESDM No. 40/2014)
34
INVESTASI PANAS BUMI Sumber : Asosiasi Panas Bumi Indonesia
35
ESTIMASI BIAYA INVESTASI PANAS BUMI
PEMANFAATAN TIDAK LANGSUNG (LISTRIK) Struktur Biaya Pengembangan > 110 MW Estimasi Investasi US$2.8 – 3.4 M/MW ESTIMASI BIAYA EKSPLORASI (3 LUBANG BOR) NO JENIS KEGIATAN ESTIMASI BIAYA (US$) juta 1. Survey Geologi, Geofisika, Geokimia (meneNtukan tapak bor) 7 2. AMDAL, SIPPA, IPPKH 0,1 3. Pembebasan lahan 1 4. Well Pad + Jalan Masuk (Asumsi 6 km) 5 5. Sumur 21 TOTAL 34,1 Biaya Eksporasi = 8-9% biaya Total Proyek Sumber: S. Sudarman, 2009 Sumber: diolah dari PT Pertamina Geothermal Energy 2013
36
KONDISI PANAS BUMI STATUS WILAYAH KERJA PANAS BUMI (WKP) 70 WKP
Telah Beroperasi: 10 WKP (1.698,5 MW) Rencana Pengembangan (1.153 MW) Sibayak (12 MW) Ulubelu (220 MW) Cibeureum-Parabakti (377 MW) Pangalengan (282 MW) Kamojang-Darajat (505 MW) Dieng (60 MW) Lahendong-Tompaso (120 MW) Ulumbu (10 MW) Mataloko (2,5 MW) Sibual-Buali (110 MW) STATUS WILAYAH KERJA PANAS BUMI (WKP) PRODUKSI: 10 WKP (1.698,5 MW) Rencana Pengembangan (1.153 MW) EKSPLOITASI: 8 WKP (1.135 MW) Sungai Penuh (145 MW) Lumut Balai (285 MW) Hululais (340 MW) Karaha Cakrabuana (50 MW) Cibuni (10 MW) Tabanan (65 MW) Tulehu (20 MW) Muaralaboh (220 MW) EKSPLORASI & EKPLOITASI: 29 WKP ( MW) Telah Tanda Tangan PPA/PJBL 13 WKP (1.485 MW) Gn. Rajabasa (220 MW) Rantau Dedap (220 MW) Blawan-Ijen (110 MW) Gn.Ungaran (55 MW) Telaga Ngebel (165 MW) Baturaden (180 MW) Guci (55 MW) Kaldera Danau Banten (110 MW) Cisolok Sukarame (45 MW) Tampomas (45 MW) Sorik Marapi (240 MW) Jaboi (10 MW) Sokoria (30 MW) 70 WKP (7.521,5 MW) EKSPLORASI: 21 WKP (1.915 MW) PROSES PENERBITAN IPB: 1 WKP (110 MW) Seulawah Agam (110 MW) LOG: Belum di update – Masih seperti RUPTL Proses Tanda Tangan PPA/PJBL: 8 WKP (430 MW) Gn. Talang - B. Kili (20 MW) Gn. Lawu (110 MW) Way. Ratai (55 MW) Candi Umbul Telomoyo (55 MW) Gn. Arjuno Welirang (110 MW) Songa Wayaua (10 MW) Tangkuban Perahu (60 MW) Atedai (10 MW) PERSIAPAN PENUGASAN/LELANG WKP: 30 WKP (1.510 MW)
Presentasi serupa
© 2024 SlidePlayer.info Inc.
All rights reserved.