Upload presentasi
Presentasi sedang didownload. Silahkan tunggu
Diterbitkan olehTirta Tata Telah diubah "6 tahun yang lalu
1
Disusun Oleh : Achmad fadli Tirta pawitra Nana suryana Roland Afnita
2
DISTRIBUSI PROBABILITAS NORMAL 1. Pengertian Distribusi Probabilitas Normal 2. Distribusi Probabilitas Normal Standar 3. Penerapan Distribusi Probabilitas Normal Standar 4. Pendekatan Normal Terhadap Binomial
3
1. Pengertian Distribusi Probabilitas Normal Distribusi Normal (Distribusi Gauss) merupakan distribusi probabilitas yang paling penting baik dalam teori maupun aplikasi statistik. Terminology “normal” karena memang distribusi ini adalah yang paling banyak digunakan sebagai model bagi data riil diberbagai bidang : - antara lain karakteristik fisik mahluk hidup (berat, tinggi badan manusia, hewan dll), - kesalahan-kesalahan pengukuran dalam eksperimen ilmiah pengukuran-pengukuran intelejensia dan perilaku, - nilai skor berbagai pengujian dan berbagai ukuran dan indikator ekonomi.
4
Alasan mengapa distribusi normal menjadi penting: Distribusi normal terjadi secara alamiah. Seperti diuraikan sebelumnya banyak peristiwa di dunia nyata yang terdistribusi secara normal. Beberapa variable acak yang tidak terdistribusi secara normal dapat dengan mudah ditranformasikan menjadi suatu distribusi variabel acak yang normal. Banyak hasil dan teknik analisis yang berguna dalam pekerjaan statistik hanya bisa berfungsi dengan benar jika model distribusinya berupa distribusi normal
5
Karakteristik Distribusi Kurva Normal 1. Kurva berbentuk genta ( = Md= Mo) 2. Kurva bersifat asimptotis 5. Luas daerah di bawah kurva adalah 1 - ½ di sisi kanan - ½ di sisi kiri 3. Kurva berbentuk simetris 4. Kurva mencapai puncak pada saat X = = Md= Mo
6
Jenis-jenis Distribusi Normal Distribusi kurva normal dengan sama dan berbeda Note : semakin tinggi maka kurva semakin datar MesokurticPlatykurticLeptokurtic > >
7
Jenis-jenis Distribusi Normal Distribusi kurva normal dengan berbeda dan sama < <
8
Jenis-jenis Distribusi Normal Distribusi kurva normal dengan dan berbeda = 53 = 68 85850
9
µx1x1 x2x2 x 0z1z1 z2z2 z Distribusi normal baku yaitu distribusi probabilitas acak normal dengan harga rata-rata atau nilai tengah 0 dan simpangan baku 1. Transformasi dari X ke Z Di mana nilai Z: Z = Skor Z atau nilai normal baku X = Nilai dari suatu pengamatan atau pengukuran = Nilai rata-rata hitung = Standar deviasi TRANSFORMASI DARI NILAI X KE Z 2. Distribusi Probabilitas Normal Standar
10
Contoh : Harga saham di BEJ mempunyai nilai tengah 490,7 dan standar deviasinya 144,7. Berapa nilai Z untuk harga saham 600? Jawab: Diketahui: Nilai = 490,7 = 144,7 X = 600 Maka nilai Z = ( X - ) / Z= (600 – 490,7)/144,7 Z= 0,76
11
LUAS DI BAWAH KURVA NORMAL -3 -3 =x Z=0 +1 +1 +2 +2 +3 +3 -2 -2 -1 68,26% 99,74% 95,44% Luas antara nilai Z (-1<Z<1) sebesar 68,26% dari jumlah data. Berapa luas antara Z antara 0 dan sampai Z = 0,76 atau biasa dituis P(0<Z<0,76)? Dapat dicari dari tabel luas di bawah kurva normal. Nilainya dihasilkan = 0,2764
12
TABEL DISTRIBUSI NORMAL 0,2764 Z = 0,76
13
Contoh Kegiatan memilih 20 buah saham yang ada di BEJ : Jika harga 20 saham tersebut pada kisaran Rp. 2000-2.805 per lembarnya, Z = ( X - ) / Z 1 = ( 2.500 – 2.500) / 400 Z 2 = ( 2.805 – 2.500) / 400 Z 1 = 0 Z 2 = 0,76 Z1Z1 z Tabel dibawah kurva normal = 0,2764 Artinya probabilitas harga saham antara Rp. 2.500 sampai Rp. 2.805 adalah 27,64% maka berapa probabilitas harga saham tersebut antara Rp. 2.500 sampai Rp. 2.805, jika diketahui = 2.500 (nilai rata-rata hitung) dan standar deviasinya 400? = 0= 0,76 Z2Z2
14
Contoh Soal: PT GS mengklaim berat buah mangga “B” adalah 350 gram dengan standar deviasi 50 gram. Bila berat mangga mengikuti distribusi normal, berapa probabilitas bahwa berat buah mangga mencapai kurang dari 250 gram, sehingga akan diprotes oleh konsumen. 3. Penerapan distribusi Probabilitas Normal Standar
15
Jawab: Transformasi ke nilai z Diketahui: X=250, μ = 350, σ = 50 Jawab: P(x=250) = (250-350)/50=-2,00, maka P(x<250)=P(z<-2,00) Lihat pada tabel luas di bawah kurva normal P(z<-2,00)=0,4772 Luas sebelah kiri nilai tengah adalah 0,5. Oleh sebab itu, nilai daerah yang diarsir menjadi 0,5 – 0,4772=0,0228. Jadi probabilitas di bawah 250 gram adalah 0,0228 (2,28%). Dengan kata lain probabilitas konsumen protes karena berat buah mangga kurang dari 250 gram adalah 2,28%.
16
TABEL DISTRIBUSI NORMAL 0,4772 Z=2,00
17
4. Pendekatan Normal Terhadap Binomial Bila nilai X adalah distribusi acak binomial dengan nilai tengah =n.p dan standar deviasi = n.p.q, maka nilai Z untuk distribusi normal adalah: di mana n dan nilai p mendekati 0,5 Z = X – n.p n.p.q Z = X – n.p n.p.q
18
Contoh Soal: Adi merupakan pedagang buah di Tangerang. Setiap hari ia membeli 300 kg buah di Pasar Induk Kramat Jati, Jakarta Timur. Probabilitas buah tersebut laku dijual dalah 80% dan 20% kemungkinan tidak laku dan busuk. Berapa probabilitas buah sebanyak 250 kg laku dan tidak busuk ? Jawab: n = 300; probabilitas laku p = 0.8, dan q =1-p= 1–0.8 = 0.2 μ = n.p = 300 x 0.80 = 240 σ = √n.p.q = √300 x 0.80 x 0.20 = 6.93 Diketahui X = 250, dan dikurangi faktor koreksi 0.5 sehingga X = 250 – 0.5 = 249.5 Dengan demikian nilai Z menjadi: Z = (249.5 – 240) / 6.93 = 1.37 dan P (Z<1.37) = 0.4147 Jadi probabilitas laku adalah 0.5 + 0.4147 = 0.9147 Dengan kata lain harapan buah laku 250 kg adalah 91.47%
Presentasi serupa
© 2024 SlidePlayer.info Inc.
All rights reserved.