Upload presentasi
Presentasi sedang didownload. Silahkan tunggu
Diterbitkan olehRatna Kurniawan Telah diubah "6 tahun yang lalu
1
METODE SIMPLEX LINEAR PROGRAMMING (LP)
CCR314 - Riset Operasional Materi #5 Ganjil 2015/2016 6623 – Taufiqur Rachman METODE SIMPLEX LINEAR PROGRAMMING (LP) Materi #5 CCR314 – Riset Operasional Taufiqur Rachman
2
CCR314 - Riset Operasional
Materi #5 Ganjil 2015/2016 Latar Belakang Sulitnya menggambarkan grafik berdimensi banyak atau kombinasi lebih dari dua variabel. Metode grafik tidak mungkin dapat dilakukan untuk menyelesaikan masalah program linear yang melibatkan lebih dari dua variable. Dalam keadaan ini (variabel lebih dari dua) dibutuhkan metode lain yang sering disebut sebagai metode algoritma simplex. Metode ini diperkenalkan oleh George B Dantzig pada tahun 1947. Materi #5 Ganjil 2015/2016 CCR314 - Riset Operasional Taufiqur Rachman
3
CCR314 - Riset Operasional
Metode Simplex Metode simpleks merupakan prosedur iterasi yang bergerak bertahap dan berulang. Jumlah variabel tidak terbatas Penyelesaian masalah LP dengan metode simplex harus menggunakan bentuk standar. Materi #5 Ganjil 2015/2016 CCR314 - Riset Operasional
4
Persyaratan Metode Simpleks
Semua kendala pertidaksamaan harus dinyatakan sebagai persamaan. Sisi kanan (the right side) dari sebuah kendala tidak boleh ada yang negatif. Nilai kanan (NK/RHS) fungsi tujuan harus nol (0). Semua variabel dibatasi pada nilai-nilai non- negatif. Materi #5 Ganjil 2015/2016 CCR314 - Riset Operasional
5
CCR314 - Riset Operasional
Kendala Bertanda ≤ Harus ditambahkan dengan “variabel slack” non-negatif di sisi kiri kendala. Variabel ini berfungsi untuk menyeimbangkan kedua sisi persamaan. Contoh: 2X1 + 3X2 ≤ 24 dimana: X2 76 X1 = jumlah komputer yang dihasilkan X1 4X2 27 X1 = jumlah radio yang dihasilkan 2X1 + 3X2 S1 = 24 Dimana: S1, S2, dan S3 adalah variabel slack X2 S2 76 X1 4X2 S3 27 Materi #5 Ganjil 2015/2016 CCR314 - Riset Operasional
6
CCR314 - Riset Operasional
Kendala Bertanda ≥ Harus dikurangkan dengan “variabel surplus” non-negatif, dan ditambahkan dengan “variabel buatan (artificial variable)” di sisi kiri kendala. Variabel ini bertindak sama dengan variabel slack yaitu menjaga kedua sisi persamaan seimbang. Contoh: 30X1 + 15X2 ≥ 900 30X1 + 15X2 S1 S2 = 900 Dimana: S1 adalah variabel surplus, dan S2 adalah variabel artificial. Materi #5 Ganjil 2015/2016 CCR314 - Riset Operasional
7
CCR314 - Riset Operasional
Kendala Bertanda = Harus ditambahkan dengan “variabel buatan (artificial variable)” di sisi kiri kendala. Contoh: 2X1 + 3X2 ≤ 150 3X1 4X2 ≥ 240 X1 2X2 = 100 Dimana: S1 adalah variabel slack, S2 adalah variabel surplus, dan S3 ; S4 adalah variabel artificial. 2X1 + 3X2 S1 = 150 X2 S2 S3 240 X1 4X2 S4 100 ; ≥ Materi #5 Ganjil 2015/2016 CCR314 - Riset Operasional
8
Sisi Kanan Kendala Bertanda Negatif ()
Kendala dapat dikalikan dengan (1) untuk membuat sisi kanan positif. Contoh: X1 + 5X2 ≥ 150 dan 2X1 3X2 ≤ 175 X1 5X2 ≤ 150 dan 2X1 3X2 ≥ 175 Materi #5 Ganjil 2015/2016 CCR314 - Riset Operasional
9
Nilai Kanan Fungsi Tujuan Harus Nol (0)
Persyaratan 3 dari metode simpleks menyatakan bahwa nilai kanan (NK/RHS) fungsi tujuan harus nol (0). Contoh: Fungsi Tujuan: Maksimumkan Z = 3X1 + 2X2 Z 3X1 2X2 = Materi #5 Ganjil 2015/2016 CCR314 - Riset Operasional
10
CCR314 - Riset Operasional
Tabel Simplex Basic Z X1 X2 X3 … Xn S1 S2 Sn RHS 1 -C1 -C2 -C3 -Cn a11 a12 a13 a1n b1 a21 a22 a23 a2n b2 Sm am1 am2 am3 amn bn Main Body Identity Materi #5 Ganjil 2015/2016 CCR314 - Riset Operasional
11
CCR314 - Riset Operasional
Tabel Simplex Main Body Bidang yang berisi koefisien teknologi & kendala yang ada Identity Bidang yang berisi koefisien-koefisien dari variabel slack atau variabel artificial Basic Kolom yang berisi variabel basis yang diambil dari variabel slack/artificial pada saat iterasi pertama. Variabel-variabel ini secara bertahap akan diganti oleh variabel bukan basis pada iterasi berikutnya Materi #5 Ganjil 2015/2016 CCR314 - Riset Operasional
12
CCR314 - Riset Operasional
Algoritma Simpleks Ubah fungsi tujuan ke dalam bentuk implisit/standar. Masukkan semua nilai ke dalam tabel simplex. Tentukan kolom kunci (variable keputusan) yang masuk sebagai variable basis (entering variable). Kolom kunci adalah nilai Zj dengan nilai negatif terbesar (untuk maksimasi). Tentukan baris kunci: untuk menentukan variable yang akan keluar dari baris kunci (leaving variable). Kriteria: Nilai positif terkecil dari: nilai kanan dibagi dengan nilai pada kolom kunci. Angka kunci : nilai pada perpotongan baris kunci dan kolom kunci Materi #5 Ganjil 2015/2016 CCR314 - Riset Operasional
13
CCR314 - Riset Operasional
Algoritma Simplex Susun tabel simpleks baru, untuk menentukan solusi yang baru gunakan metode (Elementary Row Operation, Gauss Jordan Elimination), dengan cara: Ubah nilai pada baris kunci sehingga EV memiliki nilai 0 dan 1 pada baris lainnya. Nilai baris kunci baru = nilai baris kunci yang lama dibagi angka kunci Ubah nilai pada baris selain baris kunci Nilai baris baru = nilai baris lama dikurangi dengan hasil perkalian angka pada kolom kunci dengan baris kunci yang baru Ulangi langkah diatas sampai tidak terdapat nilai negatif pada baris Z. Iterasi berhenti jika tabel sudah optimal, jika: semua nilai pada baris Z bernilai positif atau nol (untuk maksimasi) bernilai negatif atau nol (untuk minimasi) Materi #5 Ganjil 2015/2016 CCR314 - Riset Operasional
14
CCR314 - Riset Operasional
Contoh #5.1 Fungsi tujuan: Maksimalkan Z = 3x1 + 5x2 Fungsi Kendala: 2x1 ≤ 8 3x2 ≤ 15 6x1 + 5x2 ≤ 30 Materi #5 Ganjil 2015/2016 CCR314 - Riset Operasional
15
Penyelesaian Simplex (Langkah 1)
Mengubah fungsi tujuan dan fungsi kendala (lihat ketentuan metode simplex). Fungsi tujuan: Z = 3x1 + 5x2 ⇨ Z − 3x1 − 5x2 = 0 Fungsi kendala: 2x1 ≤ 8 ⇨ 2x1 + s1 = 8 3x2 ≤ 15 ⇨ 3x2 + s2 = 15 6x1 + 5x2 ≤ 30 ⇨ 6x1 + 5x s3 = 30 Catatan: s1, s2, dan s3 adalah variabel slack. Materi #5 Ganjil 2015/2016 CCR314 - Riset Operasional
16
Penyelesaian Simplex (Langkah 2)
Menyusun persamaan-persamaan ke dalam tabel simplex. Var. Dsr Z x1 x2 s1 s2 s3 NK Index 1 −3 −5 2 8 3 15 6 5 30 Materi #5 Ganjil 2015/2016 CCR314 - Riset Operasional
17
Penyelesaian Simplex (Langkah 3)
Memilih kolom kunci (yaitu kolom yang mempunyai nilai pada baris Z (fungsi tujuan) yang bernilai negatif (−) dengan angka terbesar). Nilai negatif terbesar Var. Dsr Z x1 x2 s1 s2 s3 NK Index 1 −3 −5 2 8 3 15 6 5 30 Materi #5 Ganjil 2015/2016 CCR314 - Riset Operasional
18
Penyelesaian Simplex (Langkah 4)
Memilih baris kunci (yaitu baris yang mempunyai nilai index terkecil). Perhitungan index adalah sbb. : Index terkecil Var. Dsr Z x1 x2 s1 s2 s3 NK Index 1 −3 −5 2 8 3 15 6 5 30 Koefisien angka kolom kunci (KAAK) Pada langkah 5, S2 akan berubah menjadi X2 ∼ Angka kunci 5 6 Materi #5 Ganjil 2015/2016 CCR314 - Riset Operasional
19
Penyelesaian Simplex (Langkah 5)
Mengubah nilai-nilai baris kunci (dengan cara membaginya dengan angka kunci). Angka kunci merupakan nilai yang posisinya berada pada perpotongan antara kolom kunci dengan baris kunci Var. Dsr Z x1 x2 s1 s2 s3 NK Index 1 −3 −5 2 8 ∼ 1/3 5 6 30 Materi #5 Ganjil 2015/2016 CCR314 - Riset Operasional
20
Penyelesaian Simplex (Langkah 6)
Membuat baris baru dengan mengubah nilai-nilai baris (selain baris kunci) sehingga nilai-nilai kolom kunci = 0, dengan mengikuti perhitungan sbb. : NBBK = Nilai baris baru kunci Baris Z Baris lama [ −3 − ] NBBK −5 [ /3 0 5 ] Baris baru − /3 0 25 Materi #5 Ganjil 2015/2016 CCR314 - Riset Operasional
21
Penyelesaian Simplex (Langkah 6)
Baris s1 Baris lama [ ] NBBK 0 [ / ] Baris baru Baris s3 Baris lama [ ] NBBK 5 [ / ] Baris baru −5/3 1 5 Materi #5 Ganjil 2015/2016 CCR314 - Riset Operasional
22
Penyelesaian Simplex (Langkah 6)
Masukkan nilai baris baru Z, s1, dan s3 ke dalam tabel, sehingga tabel menjadi seperti berikut: Var. Dsr Z x1 x2 s1 s2 s3 NK Index 1 −3 5/3 25 2 8 1/3 5 6 −5/3 Materi #5 Ganjil 2015/2016 CCR314 - Riset Operasional
23
Penyelesaian Simplex (Langkah 7)
Melanjutkan perbaikan-perbaikan (langkah 3-6) sampai baris Z tidak ada nilai negatif. Hasil dari langkah 3 dan langkah 4 : Var. Dsr Z x1 x2 s1 s2 s3 NK Index 1 −3 5/3 25 2 8 4 1/3 5 ∼ 6 −5/3 5/6 Materi #5 Ganjil 2015/2016 CCR314 - Riset Operasional
24
Penyelesaian Simplex (Langkah 7)
Hasil dari langkah 5 dan langkah 6 : Var. Dsr Z x1 x2 s1 s2 s3 NK Index 1 5/6 1/2 27½ Zmax 5/9 −1/3 6⅓ 1/3 5 −5/18 1/6 Karena nilai Z sudah tidak ada yang (−), maka sudah dapat diperoleh hasil solusi optimum, yaitu: x1 = 5/6 ; x2 = 5 ; Zmax = 27½ Materi #5 Ganjil 2015/2016 CCR314 - Riset Operasional
25
Penyimpangan Bentuk Standar (Kendala =)
Fungsi kendala dengan tanda (=) Ditambahkan variabel buatan (M) pada fungsi tujuan Contoh : Fungsi Kendala: 2x ≤ 2x s = 8 3x2 ≤ x s = 15 6x1 + 5x2 = 6x1 + 5x s = 30 Fungsi Tujuan: Z = 3x1 + 5x2 Z − 3x1 5x Ms3 = 30 Materi #5 Ganjil 2015/2016 CCR314 - Riset Operasional
26
Langkah Solusi Kendala (=) .... 1
Nilai setiap variabel dasar (s3) harus sebesar 0, sehingga fungsi tujuan harus dikurangi dengan M dan dikalikan dengan baris batasan yang bersangkutan (kendala 3). Nilai baris Z sebagai berikut : Baris Z [ 1 −3 −5 M ] 6 5 30 (−6M−3) (−5M−5) (−30M) Materi #5 Ganjil 2015/2016 CCR314 - Riset Operasional
27
Langkah Solusi Kendala (=) .... 2
Iterasi 0: VD Z x1 x2 s1 s2 s3 NK Index 1 (−6M−3) (−5M−5) (−30M) 2 8 4 3 15 ∼ 6 5 30 VD Z x1 x2 s1 s2 s3 NK Index 1 (−5M−5) (3M+3/2) (−6M+12) 1/2 4 ∼ 3 15 5 6 6/5 Materi #5 Ganjil 2015/2016 CCR314 - Riset Operasional
28
Langkah Solusi Kendala (=) .... 3
Iterasi 1: VD Z x1 x2 s1 s2 s3 NK Index 1 −3/2 M+1 18 1/2 4 8 9/5 −3/5 19/3 5/27 1/5 6/5 −2 VD Z x1 x2 s1 s2 s3 NK Index 1 5/6 M+12 27 1/2 Zmax −5/18 1/6 5/9 −1/3 6 1/3 1/3 5 Materi #5 Ganjil 2015/2016 CCR314 - Riset Operasional
29
Langkah Solusi Kendala (=) .... 4
Jadi solusi optimum dari permasalah adalah: x1 = 5/6 x2 = 5 Zmax = 27 1/2 Materi #5 Ganjil 2015/2016 CCR314 - Riset Operasional
30
Penyimpangan Bentuk Standar (Fungsi Tujuan Meminimalkan)
Fungsi tujuan : Minimasi Soal minimisasi harus diubah menjadi maksimisasi dengan cara mengganti tanda positif dan negatif pada fungsi tujuan. Contoh : Fungsi Tujuan: Minimumkan Z = 3x1 + 5x2 Fungsi Kendala: 2x = 8 3x2 ≤ 15 6x1 + 5x2 ≥ 30 Materi #5 Ganjil 2015/2016 CCR314 - Riset Operasional
31
Langkah Solusi Fungsi Tujuan Meminimalkan .. 1
Fungsi kendala: 2x = ⇨ 2x s = 8 3x2 ≤ ⇨ x s = 15 6x1 + 5x2 ≥ ⇨ 6x1 + 5x − s3+ s4 = 30 Catatan: s1, s2, dan s4 adalah variabel slack, sedangkan s3 adalah variabel surplus. Fungsi tujuan menjadi: Maksimumkan (−Z) = −3x1 − 5x2 − Ms1 − Ms4 menjadi fungsi implisit −Z + 3x1 + 5x2 + Ms1 + Ms4 = 0 Materi #5 Ganjil 2015/2016 CCR314 - Riset Operasional
32
Langkah Solusi Fungsi Tujuan Meminimalkan .. 2
Nilai setiap variabel dasar (s1 dan s4) harus = 0, maka: Baris Z [ −1 3 5 M ] −M 2 1 8 6 30 (−8M+3) (−5M+5) (−38M) Materi #5 Ganjil 2015/2016 CCR314 - Riset Operasional
33
Langkah Solusi Fungsi Tujuan Meminimalkan .. 3
Iterasi 0: VD Z x1 x2 s1 s2 s3 s4 NK Index −1 (−8M+3) (−5M+5) M (−38M) 2 1 8 4 3 15 ∼ 6 5 30 VD Z x1 x2 s1 s2 s3 s4 NK Index −1 3 (−5M+5) (4M−3/2) M (−6M−12) 1 4 ∼ 15 5 −3 6 6/5 Materi #5 Ganjil 2015/2016 CCR314 - Riset Operasional
34
Langkah Solusi Fungsi Tujuan Meminimalkan .. 5
Iterasi 0: VD Z x1 x2 s1 s2 s3 s4 NK Index −1 (M+3/2) 1 M+1 (−18) Zmin 1/2 4 9/5 3/5 −3/5 5 2/5 −1/5 1/5 6/5 Karena (–Z) = (−18), maka Z = 18 Penyelesaian telah mencapai solusi optimum: x1 = 4 ; x2 = 6/5 ; Zmin = 18 Materi #5 Ganjil 2015/2016 CCR314 - Riset Operasional
35
CCR314 - Riset Operasional
Materi #5 Ganjil 2015/2016 Materi #5 Ganjil 2015/2016 CCR314 - Riset Operasional Taufiqur Rachman
Presentasi serupa
© 2024 SlidePlayer.info Inc.
All rights reserved.