Upload presentasi
Presentasi sedang didownload. Silahkan tunggu
1
FUNGSI Pertemuan III
2
FUNGSI Definisi Fungsi f adalah suatu aturan korespodensi yang menghubungkan tiap obyek x dalam suatu himpunan (daerah asal) dengan sebuah nilai unik (tunggal) f(x) dari himpunan kedua yaitu himpunan nilai yang disebut daerah hasil fungsi tersebut.
3
Jenis – jenis Fungsi Fungsi linier Fungsi kuadrat Fungsi trigonometri
Fungsi eksponential Fungsi logaritma
4
Fungsi linier Fungsi linear memiliki gambar grafik sebagai garis lurus. Notasinya adalah sbb: y = f(x) = a1x + a0; a1 ≠ 0 contoh : y = 4x + 3 a1 disebut gradien atau koefisien kemiringan
5
Fungsi kuadrat Grafik bentuk kuadrat berupa parabola, dimana bentuk rumusnya adalh: y = f(x) = a2x2 + a1x +a0; a2 ≠ 0 Contoh : y = x2 – 4x + 3
6
Fungsi Eksponential Persamaan umum fungsi eksponen :
y = f(x) = ax; a > 0, a ≠ 1
7
Fungsi Logaritma Fungsi logaritma didefinisikan dengan persamaan :
y = f(x) = logax , a > 0 , a ≠ 1 Fungsi ini terdefiniskan untuk x > 0, dan merupakan invers dari fungsi eksponen.
8
Operasi Fungsi Jumlah dan Selisih
Misalkan f dan g adalah sebuah fungsi, maka : (f + g) (x) = f(x) + g(x) (f – g) (x) = f(x) – g(x) catatan : Daerah asal (f + g) dan (f - g) adalah irisan dari daerah asal f dan g
9
Operasi Fungsi Hasil kali, Hasil Bagi dan Pangkat
Dengan anggapan bahwa f dan g mempunyai daerah asal, maka (f • g) (x) = f(x) • g(x) (f/g) (x) = f(x) / g(x) ; g(x) ≠ 0 Operasi perpangkatan pada dasarnya adalah perkalian berulang. fn artinya f kali f sebanyak n kali.
10
C Contoh soal Diketahui : f(x) = 2x-4 g(x) = -3x+2 Ditanya :
1. f+g = 2x-4-3x+2 = -x-2 2. f–g = 2x -4 –(-3x+2) = 5x - 6 3. f · g = (2x – 4)(-3x+2) = -6x² + 16x – 8 4. f/g = (2x-4)/(-3x+2) = (-6x²+8x+8)/(9x²-4)
11
FUNGSI KONSTAN Notasinya : f(x) = c
Apabila terdapat fungsi f : AB, Fungsi f disebut fungsi konstan jika setiap anggota A dipetakan ke satu anggota B yang sama Misalkan : f(x) = 2 dan x bil real Grafik fungsi ini berupa garis lurus sejajar sumbu x
12
FUNGSI LINIER Notasinya : f(x) = mx+n
Grafik fungsi ini berupa garis lurus dengan gradien m dan melalui titik (0,n)
13
GRAFIK FUNGSI Diketahui :
f(x) = x+1 dimana domain dan kodomain berupa bil riil Menuliskan fungsi dalam tabel Menuliskan fungsi dalam grafik Kartesius
14
GRAFIK FUNGSI Diketahui :
f(x) = 2x dimana domain dan kodomain berupa bil riil Menuliskan fungsi dalam tabel Menuliskan fungsi dalam grafik Kartesius
15
FUNGSI KUADRAT
16
CONTOH FUNGSI KUADRAT Diketahui :
f(x) = 2x² dimana domain dan kodomain berupa bil riil Menuliskan fungsi dalam tabel Menuliskan fungsi dalam grafik Kartesius : X -2 -1 1 2 F(X) 8
17
FUNGSI KUBIK Fungsi kubik: .
18
FUNGSI PECAH
19
FUNGSI IRASIONAL
20
Fungsi Trigonometri 1. definisi sinus, cosinus, dan tangen dalam segitiga siku-siku; 2. fungsi sinus; 3. fungsi cosinus; 4. fungsi tangen. 5. fungsi arc sinus; 6. fungsi arc cosinus; 7. fungsi arc tangen.
21
Fungsi Invers Trigonometri
Definisi Jika x = sin y, maka fungsi invers dari sinus didefinisikan dengan y = arc sin x. Dengan cara yang sama, jika: x = cos y maka inversnya adalah y = arc sin x; x = tan y maka inversnya adalah y = arc tan x. Contoh: 1. Jika sin y = 0,5, hitunglah y, jika y < 90o! Penyelesaian: sin y = 0,5 y = arc sin 0,5 y = 30o Catatan : ingat bahwa sin 30o = 0,5
22
Contoh soal 2. Jika cos y = 0,7071, hitunglah y jika y < 90o!
Penyelesaian: cos y = 0,7071 y = arc cos 0,7071 y = 45o Catatan : ingat bahwa cos 45o = 0,7071
23
Contoh soal 3. Jika tan y = 1,7321, hitunglah y, jika y < 90o!
Penyelesaian: tan y = 1,7321 y = arc tan 1,7321 y = 60o Catatan : ingat bahwa tan 60o = 1,7321
Presentasi serupa
© 2024 SlidePlayer.info Inc.
All rights reserved.