Upload presentasi
Presentasi sedang didownload. Silahkan tunggu
1
LIMIT FUNGSI Pertemuan V
2
PENGERTIAN LIMIT Konsep dasar diferensial
Adalah harga batas tertentu, L, yang dicapai oleh suatu fungsi, f(x), jika variabelnya mendekati harga tertentu, a. Kegunaan Limit : Perhitungan bentuk-bentuk tak tentu Menentukan kontinuitas/diskontinuitas suatu fungsi Perhitungan hasil bagi diferensial/turunan fungsi
3
PERHITUNGAN BENTUK TAK TENTU
Contoh :
4
KONTINUITAS FUNGSI Suatu fungsi Y = f(x) dikatakan kontinyu untuk x = a dari suatu interval tertentu jika : Y = f(a) terdefinisi mempunyai harga tertentu, misal L L = f(a)
5
PERHITUNGAN HASIL BAGI DIFERENSIAL
Menunjukkan perubahan rata-rata Y terhadap X Jika perubahan X (X) cukup kecil sehingga mendekati nol, maka : Limit dari hasil bagi diferensial = DERIVATIVE PERTAMA =
6
TURUNAN PERTAMA FUNGSI IMPLISIT
Y = c Y’ = 0 Y = aX + b Y’ = a Y = Xn Y’ = n Xn-1 Y = Un Y’ = n Un-1 . U’ Y = U ± V Y’ = U’ ± V’ Y = U/V Y’ = (U’V – V’U)/V2 Y = ex Y’ = ex Y = eu Y’ = u’.eu Y = ln X Y’ = 1/X Y = ln U Y’ = U’/U Y = ax Y’ = ax ln a
7
Turunan fungsi implisit
Y = f’(x) X Turunan yang lebih tinggi Turunan fungsi dalam bentuk parameter Jika X = f(x) dan Y = g(x), maka
8
SOAL LATIHAN LIMIT
Presentasi serupa
© 2024 SlidePlayer.info Inc.
All rights reserved.