Upload presentasi
Presentasi sedang didownload. Silahkan tunggu
1
Operations Management
William J. Stevenson Operations Management 8th edition Metode Transportasi Oleh Choirudin, M.Pd Vogel’s Approximation Method ( V A M )
2
Vogel’s Approximation Method (VAM)
Langkah-langkah nya: Susunlah kebutuhan, kapasitas masing-masing sumber, dan biaya pengangkutan ke dalam matrik Carilah perbedaan dari dua biaya terkecil (dalam nilai absolut), yaitu biaya terkecil dan terkecil kedua untuk tiap baris dan kolom pada matrik (Cij) Pilihlah 1 nilai perbedaan-perbedaan yang terbesar di antara semua nilai perbedaan pada kolom dan baris Isilah pada salah satu segi empat yang termasuk dalam kolom atau baris terpilih, yaitu pada segi empat yang biayanya terendah di antara segi empat lain pada kolom/baris itu. Isiannya sebanyak mungkin yang bisa dilakukan
3
Gudang Kapasitas Perbedaan baris A B C Pabrik W 20 5 8 90 H 15 10 60 P
Tabel Feasible solution mula-mula dari metode VAM Gudang Kapasitas Perbedaan baris A B C Pabrik W 20 5 8 90 H 15 10 60 P 25 19 50 Kebutuhan 110 40 Perbedaan Kolom 3 5 9 Pilihan XPB = 50 5 5 2 Hilangkan baris P P mempunyai perbedaan baris/kolom terbesar dan B mempunyai biaya angkut terkecil
4
Gudang Kapasitas Perbedaan baris A B C Pabrik W 20 5 8 90 H 15 10 60
Tabel Feasible solution mula-mula dari metode VAM Gudang Kapasitas Perbedaan baris A B C Pabrik W 20 5 8 90 H 15 10 60 Kebutuhan 50 40 Perbedaan Kolom 3 5 Pilihan XWB = 60 5 15 2 Hilangkan kolom B Kebutuhan Gd B menjadi 60 krn telah diisi kapasitas pabrik P=50 (dihilangkan) B mempunyai perbedaan baris/kolom terbesar dan W mempunyai biaya angkut terkecil
5
Gudang Kapasitas Perbedaan baris A B C Pabrik W 20 8 30 H 15 10 60
Tabel Feasible solution mula-mula dari metode VAM Gudang Kapasitas Perbedaan baris A B C Pabrik W 20 8 30 H 15 10 60 Kebutuhan 50 40 Perbedaan Kolom 12 5 Pilihan XWC = 30 5 2 Hilangkan baris W Kapasitas Pabrik W menjadi 30 krn telah diangkut ke pabrik B=60 (dihilangkan) W mempunyai perbedaan baris/kolom terbesar dan C mempunyai biaya angkut terkecil
6
Gudang Kapasitas Perbedaan baris A B C Pabrik W H 15 10 60 Kebutuhan
Tabel Feasible solution mula-mula dari metode VAM Gudang Kapasitas Perbedaan baris A B C Pabrik W H 15 10 60 Kebutuhan 50 Perbedaan Kolom 5 Pilihan XHA = 50 Pilihan XHC = 10 H mempunyai perbedaan baris/kolom terbesar dan C mempunyai biaya angkut terkecil Kebutuhan gudang C menjadi 10 krn telah diisi pabrik W=30 (dihilangkan)
7
Matrik hasil alokasi dengan metode VAM
Ke Dari Gudang A B C Kapasitas Pabrik Pabrik 20 60 5 30 8 90 W 50 15 10 H 25 19 P Kebutuhan Gudang 110 40 200 Setelah terisi semua, maka biaya transportasinya yang harus dibayar adalah 60(Rp 5,-) + 30(Rp 8,-) + 50(Rp 15,-) + 50(Rp 15,-) + 10(Rp 10,-) + 50(Rp 10,-) = Rp 1.890,-
8
Latihan Pasar Penawaran Perbedaan baris 1 2 3 Pabrik 8 5 6 120 15 10
Tabel Feasible solution mula-mula dari metode VAM Pasar Penawaran Perbedaan baris 1 2 3 Pabrik 8 5 6 120 15 10 12 80 9 90 Permintaan 135 75 Perbedaan Kolom
9
TERIMAKASIH
Presentasi serupa
© 2024 SlidePlayer.info Inc.
All rights reserved.