Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

STRUCTURAL EQUATION MODELING (SEM)

Presentasi serupa


Presentasi berjudul: "STRUCTURAL EQUATION MODELING (SEM)"— Transcript presentasi:

1 STRUCTURAL EQUATION MODELING (SEM)
Oleh: Dr. Suliyanto, SE,MM Structural Eqution Modeling Download

2 INTRODUKSI STRUCTURAL EQUATION MODELING (SEM)
Dalam fenomena manajemen (Bisnis) sebuah variabel tergantung dapat dipengaruhi oleh beberapa variabel bebas, demikian juga beberapa variabel bebas mampu mempengaruhi beberapa variabel tergantung. Sehinga model akan nampak menjadi sangat rumit. Model yang rumit ini pada dasarnya dapat dianalisis dengan menggunakan analisis regresi maupun analisis jalur, namun dalam prakteknya akan tidak efisien karena masing masing-sub struktur harus dianalisis satu persatu, kemudian baru digabungkan menjadi sebuah model yang utuh. Permasalahan yang rumit tersebut dapat dianalis dengan menggunakan analisis Structural Equational Modeling (SEM) dengan menggunakan Program AMOS.

3 LANGKAH-LANGKAH PEMODELAN SEM
Pengembangan sebuah model berbasis teori. Pengembangan Path diagram. Konversi path diagram ke dalam persamaan. Persamaan struktural (Struktural equation) Persamaan spesifikasi model pengukuran (measurement model) Pemilihan matriks input dan estimasi model

4 Pemilihan matriks input dan estimasi model
Matriks input data yang digunakan adalah matriks varian/kovarian atau matriks korelasi. Ukuran sampel, Hair, et al. (1996) menemukan bahwa ukuran sampel yang sesuai untuk SEM adalah Estimasi model, yang tersedia dalam program AMOS adalah tehnik.Maximum Likehood Estimation Method, Generalized Least Square Estimation Method, Unweighted Least Square Estimation (ULS), Scale Free Least Square Estimation (SLS) dan Asymptotically Distribution-Free Estimation (SLS). Menilai problem identifikasi

5 Evaluasi criteria Goodness-of-fit
Evaluasi asumsi SEM Normalitas, dengan menggunakan criteria nilai kritis sebesar  2,58 pada tingkat signifikansi 0,01. Outliers, merupakan observasi atau data yang memiliki karakteristik unik, Dengan menggunakan kriteria nilai kritis 3, maka data dinyatakan oulier jika memiliki nilai Z-score lebih tinggi 3 atau lebih rendah dari -3. Multicollinearity dan Singularity, dimana yang perlu diamati adalah diterminan dari matrik kovarian sampelnya determinan yang kecil atau mendekati nol mengindikasikan adanya multikolinearitas atau singularitas, sehingga data tersebut tidak dapat digunakan untuk penelitian.

6 Uji kesesuaian dan uji statistik
2 – Chi-Square statistic, semakin kecil nilai 2 semakin baik model itu, dan diterima berdasarkan probabilitas dengan cut-off value sebesar p> 0,05 atau p>0,010. RMSEA (The Root Mean Square Error of Approximation), merupakan suatu indeks yang digunakan untuk mengkonpensasi chi-square dalam sampel yang besar. GFI (Goodness of fit Index), merupakan ukuran non statistical yang mempunyai rentang nilai antara 0 sampai dengan 1. Nilai yang tinggi dalam indeks ini menunjukkan sebuah “better fit”. AGFI (Adjusted Goodness of Fit Index), merupakan kriteria yang memperhitungkan proporsi tertimbang dari varian dalam sebuah matrik kovarian sampel. CMIN/DF (The Minimum Sample Discrepancy Function Devided with degrre of Freedom), merupakan statistic chisquare X2 dibagi degree of freedom-nya sehingga disebut X2 relative. TLI (Tucker Lewis Indeex), merupakan incremental index yang membandingkan sebuah model yang diuji terhadap sebuah baseline model . CFI (Comparative Fit Index), rentang nilai sebesar 0 -1, dimana semakin mendekati 1, mengindikasikan tingkat fit yang paling tinggi.

7 Goodness of Fit Index Goodness of Fit Index Cut off Value
X2-Chi Square Diharapkan Kecil Significance Probability ≥ 0,05 RMSEA ≤ 0,08 GFI ≥ 0,90 AGFI CMIN/DF ≤ 2,00 TLI ≥ 0,95 CFI

8 Uji Reliability dan Varience Extract.
Uji reliabilitas, dimana nilai reliabilitas yang diterima adalah  0,70 Uji reliabilitas dalam SEM dapat diperoleh melalui rumus sebagai berikut : Variance Extract, dimana nilai yang dapat diterima adalah 0,50 rumus yang digunakan adalah sebagai berikut :

9 Interprestasi dan Modifikasi Model
Langkah terakhir adalah menginterprestasikan model dan memodifikasikan model bagi model-model yang tidak memenuhi syarat pengujian yang dilakukan. Cut-off value sebesar 2,58 (Hair at al. 1995; Joreskog, 1993, dalam Ferdinand;p97 ) dapat digunakan untuk menilai signifikansi tidaknya residual yang dihasilkan oleh model. Nilai residual values yang lebih besar atau sama dengan 2.58 diinterprestasikan sebagai signifikan secara statistik pada tingkat 5%.

10 PETUNJUK OPERASI PROGRAM AMOS

11 Cara Membuka Program AMOS

12 Cara Merubah Tampilan Potrait menjadi Lanscape

13 Cara Memunculkan Toolbar pada Lembar Kerja

14 Cara Menggambar Model

15

16 Cara Mengakses Data

17 Cara Memerintahkan Program AMOS untuk Melakukan Analisis

18 Cara Melihat Output Program AMOS

19 Cara Memberi Judul dalam Lembar Kerja

20 Memunculkan Nilai-Nilai Output

21 APLIKASI PEMODELAN STRUCTURAL EQUATIONAL MODEL
Oleh: Dr. Suliyanto, SE,MM

22 Langkah 1. Pengembangan Model Berbasis Teori
Tujuan dari analisis ini adalah untuk mengetahui bagaimana interkasi antara harga, fasilitas, produk, promosi dan harga. Penelitian ini menguji pengaruh harga, fasilitas dan produk terhadap promosi serta pengaruh harga, fasilitas, produk dan promosi terhadap image

23 Langkah 2. Menyusun Pathdiagram

24 Langkah 4. Memilih Matriks Input dan Teknik Estimasi
Setelah model dispesifikasi secara lengkap langkah selanjutnya adalah memilih jenis input. Apakah menggunakan input kovarian atau input korelasi. Jika yang diuji adalah hubungan kausalitas maka disarankan input yang digunakan adalah kovarian (Hair ddk, 1995 dalam Ferdinand, 2005).

25 Langkah ke 5. Menilai kemungkinan munculnya indentfication problem
Jika terdapat identification problem program Amos akan memberikan warning, sehingga pengguna akan melakukan langkah-langkah perbaikan. Tetapi jika program Amos dapat dijalankan menunjukkan bahwa besaran standart error, varian error serta korelasi antar koefisien estimasi berada dalam rentang nilai yang tidak menunjukkan adanya problem identifikasi.

26 Langkah ke 6. Evaluasi Kriteria Goodness of Fit

27 Evaluasi atas Outlier data
1). Uji Outlier Data secara Univariate

28 Uji Outlier Data secara Multivariate

29 Evaluasi Multicollinearrity dan Singularity

30 Evaluasi Kriteria Goodness of Fit

31 Langkah 7. Analisis Direct Effect, Indirect Effect, dan Total Effect
Pengaruh Langsung

32 Pengaruh Tidak Langsung

33 Pengaruh Total

34 Langkah 8. Interpretasi dan Modifikasi Model

35 Perbaikan Model

36 Langkah 9. Uji Validitas Dan Reliabilitas

37

38

39

40

41 Output Structural Equational Model Standardized

42 Output Structural Equational Model Unstandardized

43 TERIMA KASIH


Download ppt "STRUCTURAL EQUATION MODELING (SEM)"

Presentasi serupa


Iklan oleh Google