Upload presentasi
Presentasi sedang didownload. Silahkan tunggu
1
PROGRAM LINEAR 1. PENGANTAR
Program Linear (Linear Programming = LP) merupakan salah satu teknik OR yg digunakan paling luas dan di-ketahui dengan baik. LP merupakan metode matematik dalam mengalokasikan sumberdaya yang langka untuk mencapai suatu tujuan seperti memaksimumkan keun-tungan atau meminimumkan biaya. LP banyak diterap-kan dalam pemecahan masalah eko-nomi, industri, meliter, sosial, dll. 2. FORMULASI MODEL LP Masalah keputusan yang sering dihadapi analis adalah mengalokasikan optimum sumberdaya yang langka. Sumberdaya dapat berupa uang, tenaga kerja, bahan mentah, kapasitas mesin, waktu, ruangan atau tekno-logi.
2
Hasil yg diinginkan ditunjukkan sebagai maksimisasi dari beberapa ukuran seperti : profit, penjualan, dan kesejahteraan, atau minimalisasi seperti biaya, waktu, dan jarak. 3 tahap memformulasikan model matematik : Tentukan variabel keputusan dan nyatakan dalam simbol matematik. Membentuk fungsi tujuan yg ditunjukkan sebagai suatu hubungan linear dari variabel keputusan. Menentukan semua kendala masalah tersebut dan mengekspresikan dalam persamaan atau pertidak- samaan yg juga merupakan hubungan linear dari variabel keputusan yg mencerminkan keterbatasan sumberdaya masalah tersebut.
3
Contoh 1: Sebuah perusahaan ingin menentukan berapa banyak masing-masing dari 3 produk yg berbeda yg akan dihasil- kan dengan tersedianya sumberdaya yg terbatas agar di- peroleh keuntungan maksimum. Kebutuhan buruh, bahan mentah dan sumbangan keuntungan masing-masing pro- duk adalah : Kebutuhan Sumberdaya Keuntungan Buruh(jam/Unit) Bahan (kg/unit) (Rp/unit) Produk Produk Produk
4
Tersedia 240 jam kerja dan bahan mentah sebanyak 400
kg. Masalahnya adalah menentukan jumlah masing- masing produk agar keuntungan maksimum. Merumuskan Masalah : 1. Variabel Keputusan X1 = Jumlah produk 1 X2 = Jumlah produk 2 X3 = Jumlah produk 3 2. Fungsi Tujuan Tujuan dari masalah kombinasi produk adalah untuk memaksimumkan keuntungan total. Keuntungan total adalah jumlah keuntungan masing-masing produk. - Keuntungan produk 1 = 3X1 - Keuntungan produk 2 = 5X2 - Keuntungan produk 3 = 2X3 Z = 3X1 + 5 X2 + 2X3
5
3. Fungsi Kendala Kendala didalam kombinasi produk di atas adalah jum-lah buruh dan bahan mentah yang terbatas. Masing-masing produk membutuhkan buruh maupun bahan mentah. - Produk 1 membutuhkan buruh utk menghasilkan tiap unit adalah 5 jam, sehingga buruh yg dibutuhkan utk produk 1 adalah 5X1. - Produk 2 membutuhkan buruh = 2X2. - Produk 3 membutuhkan buruh = 4X3. Jumlah jam buruh yang tersedia adalah 240 jam, se-hingga fungsi kendala buruh ditulis : 5X1 + 2X2 + 4X3 240 Kendala bahan mentah dirumuskan dengan cara yang sama. Produk 1 membutuhkan 4 kg per unit, produk 2
6
produk 2 membutuhkan 6 kg per unit, produk 3 mem-
butuhkan 6 kg per unit. Tersedia 400 kg bahan menta, maka fungsi kendala dirumuskan sbb : 4X1 + 6X2 + 6X3 400 Juga harus dibatasi masing-masing variabel hanya pada nilai positif, karena akan tidak masuk akal untuk meng- hasilkan jumlah produk negatif. Kendala-kendala ini di- namakan non negativity constraint dan secara matematik dirumuskan : X10; X20; X30 Jadi masalah LP dirumuskan dalam suatu model matema- tis : 1. Fungsi Tujuan Maksimumkan : Z = 3X1 + 5 X2 + 2X3
7
2. Fungsi Kendala : 2.1. Buruh : 5X1 + 2X2 + 4X3 240 2.2. Bahan mentah : 4X1 + 6X2 + 6X3 400 X1,X2, dan X30 Contoh 2: Perusahaan sepatu “IDEAL” membuat 2 macam sepatu, yaitu Merk I1 dengan sol dari karet dan Merk I2 dengan sol dari kulit. Untuk membuat sepatu-sepatu tersebut peru- sahaan memiliki 3 macam mesin. Mesin-1 khusus mem- buat sol dari karet, mesin-2 khusus membuat sol dari kulit dan mesin-3 membuat bagian atas sepatu dan melakukan assembling bagian atas dengan sol. Setiap lusin sepatu Merk I1 mula-mula dikerjakan di mesi-1 selama 2 jam, ke- mudian tanpa melalui mesin-2 terus dikerjakan di mesin-3
8
selama 6 jam, sedangkan untuk sepatu Merk I2 tidak di-
proses di mesin_1 tetapi pertama kali dikerjakan di mesin-2 selama 3 jam kemudian di mesin-3 selama 5 jam. Jam ker- ja maksimum setiap hari untuk mesin-1 = 8jam, mesin-2 = 15 jam, dan mesin-3 = 30 jam. Sumbangan terhadap laba untuk setiap lusin sepatu Merk I 1 = Rp dan Merk I2 = Rp Masalahnya adalah menentukan berapa lusin sebaiknya sepatu Merk I1 dan Merk I2 yang di- buat agar bisa memaksimumkan laba ? Penyelesaian : 1. Variabel Keputusan : X1 = Jumlah produksi sepatu Merk I1 yg akan dibuat/hari X2 = Jumlah produksi sepatu Merk I1 yg akan dibuat/hari Z = Jumlah sumbangan laba total untuk sepatu Merk I1 dan Merk I2.
9
----------------------------------------------------------------
Sumberdaya Merk Sepatu Kapasitas Mesin Maksimum I I2 Mesin Mesin Mesin L a b a Rp Rp 2. Fungsi Tujuan : Maksimumkan Z = X X2
10
3. Fungsi Kendala : 3.1. Mesin-1 : 2X 8 3.2. Mesin-2 : X2 15 3.3. Mesin-3 : 6X1 + 5X2 30 X1, X2 0 Contoh 3 : Untuk menjaga kesehatan, seseorang harus memenuhi kebutuhan minimum per hari akan beberapa zat makan- an. Misalkan hanya ada tiga zat makanan yang dibutuh- kan yaitu kalsium, protein, dan vitamin A. Makanan se- seorang hanya terdiri dari 3 jenis, yaitu I, II, dan III yang harga, zat-zat yg terkandung didalamnya, dan kebutuhan minimum per hari akan zat-zat makanan tersebut ditun- jukkan pada tabel berikut ini :
11
----------------------------------------------------------------
Kandungan M a k a n a n Kebutuhan Zat I II III Minimum Kalsium Protein Vitamin Harga/Unit , , ,6 1. Variabel Keputusan X1 = Jumlah makanan 1 X2 = Jumlah makanan 2 X3 = Jumlah makanan 3
12
2. Fungsi Tujuan : Minimumkan : Z = 0.5X X X3 3. Fungsi Kendala : 3.1. Kalsium : 5X1 + X 8 3.2. Protein : 2X1 + 2X2 + 4X3 10 3.3. Vitamin A : 1X1 + 5X2 + 4X3 22 X1, X2 0 Contoh 4 : Perusahaan Industri Ari & Sons menghasilkan dua jenis Produk yaitu P1 dan P2 masing-masing memerlukan dua macam bahan baku, A dan B. Harga jual tiap satuan adalah Rp dan Rp Bahan baku A yang tersedia adalah sebanyak 600 satuan dan B sebanyak 1000 satuan. Satu satuan P1 memerlukan satu satuan
13
bahan baku A dan satu satuan bahan baku B, sedangkan produk
P2 memerlukan satu satuan A dan satu satuan B. Semua infor- masi dapat dituangkan dalam Tabel berikut ini : Bahan Baku Jenis Produksi Bahan baku P P yg tersedia A B Harga Jual (1). Variabel Keputusan : Produk P1 : X1 Produk P2 : X2
14
(2). Fungsi Tujuan : Maksimumkan : Z = X X2 (3). Fungsi Kendala : 3.1. Bahan Baku A : X1 + X2 ≤ 600 3.2. Bahan Baku B : 2 X1 + X2 ≤ 1000 X1 , X2 ≥ 0 Contoh 5 : Seorang petani modern menghadapi suatu persoalan sbb : Setiap sapi agar supaya sehat harus diberi makanan yg mengan- dung paling sedikit 27, 21, dan 30 satuan unsur nutrisi jenis A, B, dan C setiap hanrinya. Dua jenis makanan M1 dan M2 diberi- kan kepada sapi tersebut. Satu gram makanan jenis M1 me- ngandung unsur nutrisi jenis A,B, dan C masing-masing sebesar 3,1, dan 1 satuan. Sedangkan satu gram makanan jenis M2
15
mengandung unsur nutrisi jenis A, B, dan C masing-masing 1,1,
dan 2 satuan. Harga satu gram M1 dan M2 masing-masing se- besar Rp dan Rp Petani tersebut harus memu- tuskan apakah membeli satu jenis makanan saja atau kedua- duanya kemudian mencampurnya. Tujuannya adalah agar jum- Lah pengeluaran petani tersebut minimum. (1). Variabel Keputiusan : Jenis makanan M1 : X1 Jenis makanan M2 : X2 (2). Fungsi Tujuan : Minimumkan : Z = X X2 (3). Fungsi Kendala: 3.1. Nutrisi A : 3X1 + X2 ≥ 27 3.2. Nutrisi B : X1 + X2 ≥ 21 3.3. Nutrisi C : X1 + 2X2 ≥ 30 X1 , X2 ≥ 0
16
BENTUK UMUM MODEL LP Bentuk Umum Model LP : Maksimum/Minimumkan :
dengan syarat : aijxj (,=,)bi, untuk semua i (1,2,..) semua xj 0. Keterangan : xj : banyaknya kegiatan j, dimana j=1,2,…., n berarti disini terdpt n var keputusan.
17
Z : nilai fungsi tujuan cj : sumbangan per unit kegiatan j. Untuk masalah maksimisasi cj menunjukkan keuntungan atau penerimaan per unit, sementara dlm kasus minimisasi menunjuk- kan biaya per unit. bi : jumlah sumberdaya ke i (1,2,..) berarti terdapat m jenis SD. aij : banyaknya SD i yg dikonsumsi SD j.
18
ASUMSI MODEL LP Model LP mengandung asumsi-asumsi im-
plisit tertentu yg hrs dipenuhi agar defini- sinya sebagai suatu masalah LP absah. Asumsi-asumsi tersebut meliputi : 1. Linearity dan Additivity Syarat utama dari LP adalah bahwa fungsi tujuan dan semua kendala hrs linear (garis lurus).
19
LP juga mensyaratkan bahwa jumlah variabel kriteria dan jumlah penggunaan sumberdaya harus bersifat additif. Contoh: Keuntungan total Z yg merupakan variabel keputusan sama dengan jumlah ke-untungan yg diporoleh dari kegiatan cjxj. Juga seluruh sumberdaya yang digunakan untuk semua kegiatan, harus sama dengan jumlah sumberdaya yang digunakan untuk masing-masing kegiatan. Additif dapat diartikan sebagai tak adanya penyesuaian pada perhitungan variabel ke-putusan karena terjadinya interaksi.
20
2. Divisibility, asumsi ini berarti bahwa nilai solusi yg diperoleh Xj tidak harus berupa bilangan bulat. Ini berarti nilai Xj dapat ter-jadi pada nilai pecahan manapun, karena nilai variabel keputusan merupakan variabel kon-kinu, sebagai lawan dari variabel diskrit atau bilangan bulat. 3. Deterministik Dalam LP semua parameter model (cj,aij,bi) di-asumsikan diketahui konstan. LP secara tak langsung mengasumsikan suatu masalah ke-putusan dalam suatu kerangka statis dimana semua parameter diketetahui dgn kepastian.
21
Dalam kenyataannya, parameter model jarang bersifat deterministik, karena mereka mencer-minkan kondisi masa depan maupun sekarang, dan keadaan masa depan jarang di-ketahui dengan pasti. Ada beberapa cara utk mengatasi ketidakpastian dalam model LP, yaitu dengan analisis sensitivitas. Analisis sensitivitas adalah suatu teknik yang di-kembangkan untuk menguji nilai solusi, bagai-mana kepekaannya terhadap perubahan parameter.
Presentasi serupa
© 2024 SlidePlayer.info Inc.
All rights reserved.