Upload presentasi
Presentasi sedang didownload. Silahkan tunggu
1
Distribusi Probabilita
2
Distribusi Probabilita
Distribusi Probabilita adalah semua peristiwa yang dapat terjadi dengan persentase terjadinya peristiwa tersebut atau fungsi yang memetakan peristiwa dasar dari suatu ruang sampel (R) ke nilai numerik (X). Variabel acak (random variable) adalah nilai numerik yang ditentukan dari hasil terjadinya suatu peristiwa atau probabilita yang terdistribusi menurut nilai-nilai kemungkinan.
3
Variabel Acak Contoh 1 : a. 1 coin dilempar R = { G , A } X = peristiwa banyaknya sisi Angka yang muncul = { 0, 1 } b. Sebuah dadu dilempar sekali R = { 1, 2, 3, 4, 5, 6 } X = banyaknya mata dadu yang muncul = { 1, 2, 3, 4, 5, 6 } R X G A
4
c. Pengamatan terhadap tamu di hotel Ambruk
X = lamanya menginap (hari) = { 0, 1, 2, 3, 4, 5, …} d. Pengamatan terhadap tabungan di Bank Collaps X = saldo tabungan = { x | x > 0} Berdasarkan contoh di atas, variabel acak dapat dikelompokkan menjadi variabel acak diskrit (a,b,c,d,e) dan variabel acak kontinu (f)
5
VARIABEL ACAK Variabel acak
Sebuah ukuran atau besaran yang merupakan hasil suatu percobaan atau kejadian yang terjadi acak atau untung-untungan dan mempunyai nilai yang berbeda-beda. Variabel acak diskret Ukuran hasil percobaan yang mempunyai nilai tertentu dalam suatu interval. Variabel acak kontinu Ukuran hasil percobaan yang mempunyai nilai yang menempati seluruh titik dalam suatu interval.
6
Perbedaan distribusi variabel acak yang diskrit dengan kontinus
A Discrete distribution is based on random variables which can assume only clearly separated values. A Continuous distribution usually results from measuring something. Continuous distributions include: Eksponensial Normal Uniform Others Discrete distributions studied include: Binomial Hypergeometric Poisson. Perbedaan distribusi variabel acak yang diskrit dengan kontinus
7
Distribusi Probabilita Diskrit
Hasil percobaan (outcomes) adalah mutually exclusive. Total probabilitas dari seluruh kemungkinan hasil adalah 1.00. Probabilitas suatu hasil percobaan adalah antara 0 dan 1.00. Jumlah Mahasiswa dalam satu kelas Jumlah mobil yang datang ke tempat cuci mobil Jumlah anak dalam keluarga
8
Rata-rata nilai variabel random
rata-rata (mean) Rata-rata nilai variabel random Nilai mean distribusi probabilitas Dimana m adalah mean distribusi probabilitas Kadang kala disebut sebagai nilai harapan (expected value), E(X), dalam distribusi probabiltas
9
Varians distribusi probabilitas diskrit
Dilambangkan oleh huruf latin 2 (sigma squared) Mengukur persebaran (variasi) dari distribusi Standard deviasi adl akar dari 2. Varians distribusi probabilitas diskrit
10
# rumah yg dicat # minggu Persentase perminggu 10 5 25 (5/20) 11 6 30 (6/20) 12 7 35 (7/20) 13 2 10 (2/20) Total % 100 (20/20) Dan Desch, adalah pemilik College Painters, mencatat pekerjaan pengecatan rumah selama 20 minggu yang lalu dan mendapatkan hasil pengecatan rumah setiap minggunya.
11
Rata-rata rumah yang dicat setiap minggu
# Rumah yg dicat (x) Probabilitas P(x) x*P(x) 10 .25 2.5 11 .30 3.3 12 .35 4.2 13 .10 1.3 m = 11.3 Rata-rata rumah yang dicat setiap minggu
12
Varians jumlah rumah yang dicat per minggu nya
# rumah yg dicat (x) Probabilitas P(x) (x-m) (x-m)2 (x-m)2 P(x) 10 .25 1.69 .423 11 .30 .09 .027 12 .35 .49 .171 13 .10 2.89 .289 s2 = .910
13
Distribusi Probabilita Binomial
Seringkali dalam suatu percobaan menghasilkan dua hasil alternatif seperti siang-malam, gambar-angka, sakit-sehat, baik-buruk, cacat-tdk cacat, sukses-gagal, dll
14
Ciri-ciri percobaan binomial :
Percobaan dilakukan atas n ulangan Setiap ulangan hasilnya digolongkan menjadi dua yaitu ‘sukses’ dan ‘gagal’ Probabilita peristiwa ‘sukses’ (p) untuk setiap ulangan sama atau tidak berubah. Antara ulangan yang satu dan ulangan yang lain bersifat bebas. Probabilita ‘gagal’ (q) = 1 – p ‘sukses’ disini berarti salah satu hasil yang sedang diperhatikan akan muncul. Misalkan : sukses = sisi angka yang muncul sukses = sisi cacat yang muncul
15
μ = E (X) = ∑ x P(x) = n p Nilai Harapan distribusi Binomial
Varians dan Deviasi standar : Varians : σ2 = n p q Deviasi std : σ = √ n p q X = banyaknya peristiwa sukses yang memilki prob. p dari percobaan binom dengan n ulangan
16
Rumus Binomial
17
Contoh soal There are five flights daily from Pittsburgh via US Airways into the Bradford, Pennsylvania, Regional Airport. Suppose the probability that any flight arrives late is .20. What is the probability that none of the flights are late today?
18
jawaban
19
Distribusi Poisson Distribusi Poisson merupakan distribusi variabel acak yang hasil percobaannya terjadi dalam selang waktu atau daerah tertentu. Distribusi ini secara luas banyak dipakai terutama dalam proses simulasi, seperti proses kedatangan, proses antrian dll. Untuk x=1, 2, 3, … Dimana adalah rata-rata banyaknya hasil percobaan yang terjadi dalam selang waktu atau daerah tertentu dan e = 2,71828
20
Distribusi Poisson Percobaan Poisson memiliki ciri-ciri sbb :
Banyaknya hasil percobaan yg terjadi dalam selang waktu atau daerah tertentu tidak bergantung pd selang waktu atau daerah lain yang terpisah. Probabilita terjadinya suatu hasil percobaan selama suatu selang waktu yang singkat sebanding dengan panjang selang waktu tsb. Probabilita bahwa lebih dari satu hasil percobaan akan terjadi dalam selang waktu yang singkat atau daerah yang kecil dapat diabaikan.
21
Contoh Soal 1 Seorang sekretaris rata-rata melakukan kesalahan ketik 2 huruf setiap halaman yang diketik. Berapa probabilita bahwa pada halaman berikutnya ia membuat kesalahan : a. Defenisikan variabel acak X ? b. Tepat 3 huruf, c. Kurang dari 3 huruf d. Lebih dari 2 huruf
22
X = banyaknya kesalahan ketik
Jawaban X = banyaknya kesalahan ketik b. P(X=3) = 0,180 c. P(X<3) = 0, ,27 + 0,27 = 0,675 d. P(x>2) = 1 – 0,675 = 0,325
23
Distribusi poisson Mempunyai karaketeristik yang sama dengan distribusi binomial, namun mempunyai : total seluruh kejadian (percobaan) yang sangat besar (50 atau lebih), serta probabilita hasil kejadian yang sangat kecil (0,1 = 10 persen atau lebih kecil)
24
Dist. Poisson dpt pula digunakan untuk kasus percobaan binomial, p kecil n besar.
Contoh soal 2. Secara rata-rata, 1 diantara 1000 orang terkena penyakit asam urat. Hitung probabilita bahwa dari sampel acak sebanyak 8000 orang, terdapat paling banyak 2 orang terkena penyakit asam urat.
25
jawaban n = p = 0, μ = np = 8 P(X<2) = 0, , ,00135 = 0,00439
26
Distribusi Hipergeometrik
Mempunyai karaketeristik yang hampir sama dengan distribusi binomial, namun setiap hasil percobaan mempunyai probabilita terjadi kejadian sukses yg tidak sama (tetap) hasil probabilita kejadian sukses antar percobaan adalah dependen atau saling mempengaruhi Besar populasi diketahui atau terbatas
27
Distribusi Hipergeometrik
Percobaan Hipergeometrik mempunyai ciri-ciri sbb: Suatu sampel random (n) diambil dari populasi (N) k dari N merupakan kejadian ‘sukses’ dan N-k merupakan kejadian ‘gagal’ k 'sukses' x 'sukses' n-x 'gagal' N-k 'gagal' diambil n (sampel) N (populasi)
28
Formula hipergeometrik
N = besar populasi S = jumlah sukses dalam populasi X = jumlah sukses dalam sampel n = besar sampel C = simbol untuk kombinasi
29
Contoh soal PT Mainan mempunayi 50 orang karyawan yang bekerja di bagian produksi. Empat puluh karyawannya yang bekerja di bagian produksi adalah anggota serikat pekerja (SP) dan sepuluh bukan. Lima karyawan dipilih untuk negosiasi dengan manajemen tentang perbaikan kondisi kerja bagian produksi. Berapakah probabilita empat dari lima orang yang negosiasi dengan manajemen adalah anggota SP?
30
N= jumlah populasi = 50 S= jumlah anggota SP dalam populasi = 40 n= jumlah karyawan bagian produksi yang terpilih=5 X= jumlah karyawan bagian produksi yang anggota SP yang terpilih untuk mewakili =4 = 0.431
31
Contoh soal Sebuah komisi yang beranggotakan 5 orang dipilih dari 10 orang calon yang terdiri atas 4 orang wanita dan 6 orang pria. Bila X menyatakan banyaknya wanita yang terpilih sebagai anggota komisi, hitunglah probabilita : a. 2 wanita terpilih. b. 4 wanita terpilih. Jawab : N = 10, n = 5, S= 4 a. P(X=2) = b. P(X=4)= 4C2 6C3 10C5 4C4 6C1 10C5 120 252 6 252 = =
32
Menghitung Distribusi Hipergeometrik
, untuk x = 0,1,2,…,k Nilai rata-rata: Varians:
33
A Distribution of a Continuous Random Variable
DISTRIBUSI NORMAL A Distribution of a Continuous Random Variable 33
34
Pengertian Sering disebut Gaussian Distribution
Penggunaannya mudah diaplikasikan di banyak situasi dengan mengambil sampel Hasil dari distribusi normal mendekati hasil observasi sebenarnya di berbagai sektor data, termasuk data tinggi, berat, IQ, dll 34
35
Ciri-ciri Distribusi Normal
Grafiknya hanya memiliki satu puncak dan berbentuk lonceng Mean, modus, & median dari populasi distribusi normal berada di tengah-tengah kurva normal Ekor kurva bersifat indefinit dan tidak pernah bersentuhan dengan sumbu-sumbunya Lokasi sebuah distribusi normal ditentukan oleh rata-rata, sebarannya ditentukan oleh standar deviasi 35
36
Garis distribusi normal
Mean, median, modus Garis distribusi normal Ekor grafik kanan (indefinit) Ekor grafik kiri (indefinit) 36
37
Distribusi Probabilitas Normal Baku
z = χ - µ σ X = variasi acak µ = rata-rata distribusi dai variabel acak σ = standar deviasi distribusi Z = angka standar deviasi dari x ke rerata distribusi 37
38
Contoh soal Upah mingguan para mandor pada industri gelas mengikuti distribusi probabilitas normal dengan rata-rata $1000 dan standar deviasi $100. Berapa nilai z untuk upah, sebut saja x untuk seorang mandor yang mendapatkan $1100 per minggu? Berapa nilai z untuk seorang mandor yang mendapatkan $900 per minggu? JAWAB: Untuk x = $1100: Untuk x=$900 z = χ-µ z = χ-µ σ σ z = z = z = z = - 1 38
39
Menghitung Luas Dibawah Kurva
0,3413 0,5000 ,0 skala z $ $ skala dollar 39
40
Gambar karakteristik Distribusi Normal
- 5 . 4 3 2 1 x f ( r a l i t b u o n : m = , s2 Gambar karakteristik Distribusi Normal Kurva Normal simetris Secara teoritis kurva ini tersebar sampai dengan tak terhingga a Nilai Mean, median, dan modus adl sama besar(equal)
41
Luas dibawah kurva Normal
Sekitar 68 percent (68,26%) luas area dibawah kurva normal berada antara satu standar devasi dari rerata hitungnya. m + 1s Sekitar 95 persen (95,44%) berada antara dua standar deviasi dari rerata hitungnya. m + 2s Hampir seluruh (99,74%) berada antara tiga standar deviasi dari rerata hitungnya. m + 3s Luas dibawah kurva Normal
42
Fungsi Normal Bila X adalah suatu variabel acak normal dengan nilai tengah μ dan varians σ2, maka fungsi kurva normal adalah : Untuk -∞ < X < ∞
43
Distribusi Normal Standar
Distribusi Normal Standar adalah distribusi normal yang memiliki rata-rata μ=0 dan deviasi standar σ=1. Untuk mencari probabilita suatu interval dari variabel acak normal dapat dipermudah dengan transformasi ke distribusi normal standar, sehingga diperoleh nilai Z. Nilai Z adalah selisih antara varaibel acak normal dengan rerata populasinya dibagi dengan standar deviasi populasi. Rumus transformasi :
44
Contoh soal : Berat badan mahasiswa disuatu perguruan tinggi mempunyai distribusi normal dengan rata-rata = 60 dan deviasi standar = 10. Tentukan nilai variabel normal standar bagi mahasiswa yang memiliki berat badan 70 dan 50 ! X Z
45
Probabilita Normal Standar
Dengan menggunakan tabel distribusi normal standar kita dapat menghitung probabilita (luas di bawah kurva). Contoh : P(0 < z < 1,96) = 0,475 z 0,06 1,9 0,475 0,475 , Z
46
Distribusi Eksponensial
Distribusi variabel random kontinus lainnya yang biasa digunakan untuk menyelesaikan masalah terkait dengan waktu adalah distribusi eksponensial. Distribusi eksponensial berbeda dengan distribusi normal dalam hal: Hanya terbatas pada variabel acak dengan nilai positif saja Bentuk distribusi eksponensial tidak simetris
47
Bentuk distribusi probabilitas eksponensial
48
Beda eksponensial dengan poisson
Distribusi Poisson: menunjukan probalita dari sejumlah X kejadian sukses atau kedatangan yang terjadi dalam satu satuan waktu. Distribusi Eksponensial: menunjukan probabilita satu kejadian sukses atau kedatangan dalam jangka waktu tertentu.
49
Variabel random eksponensial T (t>0) memiliki rumus distribusi probabilita eksponensial sbb:
: rata-rata kedatangan/kejadian per satuan waktu (yang sama dengan pd dist poisson) t: selang waktu sampai munculnya kedatangan/kejadian berikutnya e: nilai dengan distribusi kumulatif: Dengan rata2 (1/) dan std. deviasi (1/2) t > 0 t > 0
50
Contoh 1 Waktu pelayanan bagi seorang nasabah yang datang ke bank BEN mempunyai bentuk distribusi eksponensial. Jika rata-rata waktu untuk melayani seorang nasabah yang datang ke bank BEN oleh kasir bank adalah 5 menit. Berapakah probabilita seorang nasabah harus menunggu lebih dari 10 menit sebelum dia memperoleh pelayanan?
51
Jawab: = (1/ ) = 5 → = (1/5)= 0,2 (jumlah kejadian kedatangan nasabah per menit) P(T>10) = 1- P(T<10) = 1-F(10) = 1- (1- e –(0,2)(10)) = e-2,0 =0,1352 Jadi probabilita seorang nasabah yang datang ke bank BEN harus menunggu lebih dari 10 menit untuk dilayani oleh kasir adalah 13,52%
52
Pabrik sepatu Karvel di JABABEKA dengan 2000 karyawan/buruh mempunyai rata-rata waktu hilang setiap minggu akibat kecelakaan dalam pabrik sebesar 0,4. Jika peristiwa terjadinya kecelakaan dalam pabrik mengikuti distribusi poisson, hitunglah probabilita kejadian antara kecelakaan dalam pabrik akan kurang dari 2 minggu.
53
Jawab Waktu antar kecelakaan dinyatakan dalam minggu. Banyaknya kecelakaan per minggu adalah 0,4 atau =0.4. Atau rata-rata waktu antara 2 kecelakaan =(1/0,4)=2,5 minggu. Probabilita waktu antar kecelakaan adalah kurang dari 2 minggu: P(T<2)= F(2) =1- e-(0,4)(2) =1-e-0,8 = 1-0,4493 =0,5507 Jadi probabilita waktu antar kecelakaan adalah kurang dari 2 minggu adalah sebesar 55,07%
54
MENGGUNAKAN MS EXCEL UNTUK DISTRIBUSI BINOMIAL
Distribusi Probabilitas Diskret Bab 8 MENGGUNAKAN MS EXCEL UNTUK DISTRIBUSI BINOMIAL Anda klik icon fx atau anda klik icon insert dan pilih fx function. Anda pilih menu statistical pada function category Anda pilih menu Binomdist pada function name, Anda tekan OK. 4. Setelah anda tekan OK pada langkah ke-3, maka akan keluar kotak dialog seperti berikut: BINOMDIST Number_s : ………… (masukkan nilai X) Trials : ……….. (masukkan nilai n) Probability : ………… (masukkan nilai p) Cumulative: ………… (tulis kata False) Nilai P(r) akan muncul pada baris Formula result atau tanda (=)
57
MENGGUNAKAN MS EXCEL UNTUK DISTRIBUSI HIPERGEOMETRIK
Distribusi Probabilitas Diskret Bab 8 MENGGUNAKAN MS EXCEL UNTUK DISTRIBUSI HIPERGEOMETRIK Klik icon fx atau anda klik icon insert dan pilih fx function Pilih menu statistical pada function category Pilih menu HYPGEOMDIST pada function name, anda tekan OK Setelah tekan OK pada langkah ke-3, maka akan keluar kotak dialog seperti berikut HYPGEOMDIST Sampel_s : ………… (masukkan nilai r) Number_sampel : ……….. (masukkan nilai n) Population_s : ………… (masukkan nilai S) Number_pop : ………… (masukkan nilai N) Nilai P(r) akan muncul pada baris Formula result atau tanda (=)
60
MENGGUNAKAN MS EXCEL UNTUK DISTRIBUSI POISSON
Distribusi Probabilitas Diskret Bab 8 MENGGUNAKAN MS EXCEL UNTUK DISTRIBUSI POISSON Klik icon fx atau anda klik icon insert dan pilih fx function Pilih menu statistical pada function category Pilih menu POISSON pada function name, tekan OK Setelah tekan OK pada langkah ke-3, maka akan keluar kotak dialog seperti berikut: POISSON X : ………… (masukkan nilai x) Mean : ……….. (masukkan nilai m) Cumulative : ………… (tulis FALSE) Nilai P(X) akan muncul pada baris Formula result atau tanda (=)
Presentasi serupa
© 2024 SlidePlayer.info Inc.
All rights reserved.