Upload presentasi
Presentasi sedang didownload. Silahkan tunggu
Diterbitkan olehAndriana Wirawan Telah diubah "10 tahun yang lalu
1
Integrated Plant Nutrient Management
PENGELOLAAN HARA TANAMAN TERPADU Integrated Plant Nutrient Management
2
PRESENTASI & DISKUSI Integrated Nutrient management,
Integrated Water Management, Integrated Soil management, etc
3
Apa yang dimaksud dengan hara tanaman ?
Mengapa perlu dikelola secara terpadu ? Apa tujuan dari pengelolaan hara tanaman terpadu ? Hara tanaman apa saja yang dapat dikelola secara terpadu ? Bagaimana cara pengelolaannya ?
4
UNSUR YANG ADA DALAM JARINGAN TANAMAN ≠ UNSUR HARA YANG DIBUTUHKAN TANAMAN
5
Agroecology: science & sustainability
Fertilizers Cover crops Green manures Mulching Compost Rotations Enhanced Soil Fertility Healthy Agroecosystem Integrated Plant Management Decisions Interactions (+; -) Synergisme Crop diversity Cultural practices Pesticides Herbicides Habitat modification Enhanced Pest Regulation Healthy Crop
6
INTEGRATED NUTRIENT MANAGEMENT
Integrated Nutrient Management advocates balanced & integrated use of fertilizers. INM envisage following components : Use of Chemical fertilisers including secondary and micro-nutrients, Bio-fertilisers, Organic manures, green manures, press mud etc. Application of INM needs to be based upon Soil test results (ideally)
7
Dikelola jumlah (takaran)nya
HUKUM MINIMUM LIEBIG minimum
8
Concentration of Nutrient in Tissue (dry basis) Critical Concentration
10% Reduction in Growth Luxury Consumption Toxicity Critical Nutrient Range (no symptoms) Visual Symptoms Deficiency Visual Symptoms Concentration of Nutrient in Tissue (dry basis) Critical Concentration
9
INTERAKSI HARA DALAM TANAH
Dikelola jenis (macam) hara-nya INTERAKSI HARA DALAM TANAH
10
N berlebihan meningkatkan kekahatan tembaga (Cu) & boron (B), tingkatkan kerentanan thd serangan hama & penyakit, P berlebihan mengganggu serapan tembaga (Cu), besi (Fe) dan seng (Zn), K berlebihan menimbulkan kekahatan boron & menurunkan rasio minyak terhadap tandan pada sawit, Tembaga (Cu) & sulfat berlebihan hambat serapan Mo,
11
Tembaga, seng & mangan berlebihan hambat serapan Fe,
K atau Na berlebihan turunkan serapan mangan & boron, N & Mg berlebihan sebabkan kekahatan tembaga, Pengapuran (Ca) berlebihan turunkan serapan boron & kekahatan Mg, Kelebihan besi, tembaga atau seng hambat serapan Mn.
12
How the pH of Soil Affects the Availability of Nutrients
Different types of plants have different soil pH requirements
13
Dikelola jenis (macam) sumber hara-nya
Mineral Organik Gas
14
Plant roots – the primary route for mineral nutrient acquisition
Meristematic zone Cells divide both in direction of root base to form cells that will become the functional root and in the direction of the root apex to form the root cap Elongation zone Cells elongate rapidly, undergo final round of divisions to form the endodermis. Some cells thicken to form casparian strip Maturation zone Fully formed root with xylem and phloem – root hairs first appear here
15
ROOT ABSORBS DIFFERENT MINERAL IONS IN DIFFERENT AREAS
Calcium Apical region Iron Apical region (barley) Or entire root (corn) Potassium, nitrate, ammonium, and phosphate All locations of root surface In corn, elongation zone has max K accumulation and nitrate absorption In corn and rice, root apex absorbs ammonium faster than the elongation zone does In several species, root hairs are the most active phosphate absorbers
16
WHY SHOULD ROOT TIPS BE THE PRIMARY SITE OF NUTRIENT UPTAKE?
Tissues with greatest need for nutrients Cell elongation requires Potassium, nitrate, and chlorine to increase osmotic pressure within the wall, Ammonium is a good nitrogen source for cell division in meristem, Apex grows into fresh soil and finds fresh supplies of nutrients. Nutrients are carried via bulk flow with water, and water enters near tips, Maintain concentration gradients for mineral nutrient transport and uptake.
17
ROOT UPTAKE SOON DEPLETES NUTRIENTS NEAR THE ROOTS
Formation of a nutrient depletion zone in the region of the soil near the plant root Forms when rate of nutrient uptake exceeds rate of replacement in soil by diffusion in the water column Root associations with Mycorrhizal fungi help the plant overcome this problem
18
Dasar Penetapan PEMUPUKAN BERIMBANG Musim potensi fotosintesis,
Potensi produksi tanaman, Interaksi hara (nol, sinergisme, antagonisme), Hara total vs tersedia tanah & faktor penjerapnya,, Reaksi pupuk (kemasaman akibat 100 kg Za diatasi dg 107 kg kaptan; 100 kg Urea dg 36 kg kaptan), Jumlah & perbandingan hara terbawa panen, Kandungan hara dlm daun (efektivitas serapan), Aktivitas Biota tanah, Cara & waktu pemberian pupuk.
19
INTERAKSI POSITIF (SINERGISME) :
Pemberian Zn tingkatkan serapan K, perbaiki status N, P & Ca didalam tanaman, tingkatkan produksi kelapa sawit sampai 12 – 78%, Pemberian Zn melalui daun (larutan 1000 ppm Zn) lebih efektif drpd pemberian lewat tanah atau injeksi
20
C H O N Ca 16 Essential Elements P Mg K S B Cl Cu Fe Mn Mo Zn
21
Non-Mineral Nutrients
Carbon (C) Hydrogen (H) Oxygen (O) Used in photosynthesis
22
MINERAL NUTRIENTS Major Nutrients Micronutrients Secondary Nutrients
Nitrogen (N) Phosphorus (P) Potassium (K) Micronutrients Boron (B) Chloride (Cl) Copper (Cu) Iron (Fe) Manganese (Mn) Molybdenum (Mo) Zinc (Zn) Secondary Nutrients Calcium (Ca) Magnesium (Mg) Sulfur (S)
23
Kation2 dalam larutan tanah
Muatan Negatif Kation2 teradsorbsi Ca2+ H+ K+ Mg2+ NH4+ Na+ H+ K+ Mg2+ NH4+ Na+ Kation2 dalam larutan tanah fenolik O- karboksil COO- hidroksil O- COO- SATUAN INTI KOLOID HUMUS (C, H & O) O- COO- O- karboksil COO- fenolik O- karboksil COO- ADSORPSI (JERAPAN) KATION OLEH KOLOID HUMUS & SEL-SEL MIKROBA DALAM TANAH
24
NEGATIVELY CHARGED IONS ARE CALLED ANIONS
NUTRIENT CHEMICAL SYMBOL IONIC FORM Chlorine Cl Cl- Nitrate N NO3- Sulfate S SO4= Borate B BO4= Phosphate P H2PO4-
25
SIFAT KATION-ANION - - + Unlikes Attract + Likes Repel - + - +
26
Negatively Charged Colloids Attract Cations
K+ - - - Soil Colloid H+ - - - Ca++ - - - Mg++ Na+
27
CATION EXCHANGE CAPACITY
28
HOW DOES CATION EXCHANGE AFFECT SOIL pH?
Raising soil pH with lime Ca(OH)2 + 2H+ Ca2+ + 2H2O
29
HARA MAKROESENSIAL UNSUR DISERAP TANAMAN DALAM BENTUK
UNSUR HARA YANG DIBUTUHKAN TANAMAN HARA MAKROESENSIAL UNSUR DISERAP TANAMAN DALAM BENTUK KONSENTRASI (%) BOBOT KERING Nitrogen (N) NH4+; NO3- 4,0 Fosfor (P) PO43-; HPO42-; H2PO4- 0,5 Kalium (K) K+ Magnesium (Mg) Mg2+ Belerang (S) SO42- Kalsium (Ca) Ca2+ 1,0
30
DISERAP TANAMAN DALAM BENTUK KONSENTRASI BOBOT KERING
HARA MIKROESENSIAL UNSUR DISERAP TANAMAN DALAM BENTUK KONSENTRASI BOBOT KERING Besi (Fe) Fe 2+; Fe3+ 200 ppm Mangan (Mn) Mn2+ Seng (Zn) Zn2+ 30 ppm Tembaga (Cu) Cu2+ 10 ppm Boron (B) BO32-; B4O72- 60 ppm Molibden (Mo) MoO42- 2 ppm Klor (Cr) Cl- 3000 ppm
31
CATION EXCHANGE CAPACITY (CEC) The total number of exchangeable cations a soil can hold (amount of its negative charge) Determined in the lab using “conventional” procedure
32
“Conventional” CEC determination by displacement of cations with ammonium acetate extraction
Mg++ K+ Al 3+ NH4+ S O I L NH4+ H+ Ca++ Mg++ K+ Al 3+ NH4+ + OAc NH4OAc Solution
33
S S O O I I L L Displacement of ammonium ions with KCl solution
NH4+ S O I L K+ KCl + 9 NH4+ + 9 Cl- Solution Filter and measure ammonium by steam distillation of ammonia
34
Actual Soil Test Lab CEC Method - usually a summation method
Cations determined by: extraction using ammonium acetate, Mehlich 1, or Mehlich 3 extractants analysis using atomic absorption spectrometry or ICP equipment Sum of extractable cations (Ca, Mg, K, Na), with some adjustment for H+ and Al3+(using pH), gives estimate of “true” CEC
35
Generally ….the higher the CEC
The more fertile the soil tends to be The more clay the soil tends to have The more organic matter a soil tends to have (especially for weathered, sandy, soils in the South)
36
CLAY AND ORGANIC MATTER HAVE GREATEST INFLUENCE ON CEC
meq/100g Organic Matter meq/100g ORGANIC MATTER HAS A HIGHER CEC
Presentasi serupa
© 2024 SlidePlayer.info Inc.
All rights reserved.