Upload presentasi
Presentasi sedang didownload. Silahkan tunggu
Diterbitkan olehJonathan Syahrul Telah diubah "10 tahun yang lalu
1
Ukuran-Ukuran Dasar Dalam Epidemiologi
Created by : Aria Gusti
2
What Is The Unique Skill Of Epidemiologists?
MEASURING DISEASE FREQUENCY IN POPULATIONS
3
A. Perhitungan Frekuensi Penyakit
1. Rasio - Dapat dinyatakan dalam a/b - Berguna untuk pembandingan - Contoh ukuran yang menggunakan rasio Sex ratio Dependency ratio Rasio bidan per penduduk Rasio puskesmas per penduduk
4
How Many? Community A Community B
5
2. Proporsi / Persentase Menyatakan besar relatif suatu kelompok terhadap total semua kelompok Untuk dua kelompok a dan b, proporsi a= a/(a+b) atau persentase a = a/(a+b) x 100% Misal : Proporsi kematian karena DHF adalah jumlah yang mati karena DHF dibagi jumlah seluruh kematian
6
Distribusi Frekuensi, Proporsi dan Persentase Responden Menurut Tingkat Pendidikan
% Tidak sekolah/tdk tamat SD 5 5/53 9,4 Tamat SD 23 23/53 43,4 Tamat SLTP 10 10/53 18,9 Tamat SLTA 11 11/53 20,8 Tamat Diploma/Universitas 4 4/53 7,5 Jumlah 53 100
7
3. Rate Besarnya peristiwa yang terjadi terhadap jumlah keseluruhan penduduk dimana peristiwa itu berlangsung dalam suatu batas waktu tertentu Memasukkan unsur waktu dalam perhitungan rasio maupun proporsi Contoh: CDR (crude death rate) CBR (crude birth rate) RNI (rate of natural increase)
8
Rate
9
B. Ukuran Morbiditas Insidensi
Jumlah kejadian/penyakit (kasus baru) pada kelompok pddk tertentu dlm suatu kurun waktu tertentu
10
Pada penyakit menular tertentu dengan masa tunas yg pendek dapat dihitung attack rate (angka serangan), misal pada wabah atau Kejadian Luar Biasa (KLB) yg biasanya berlangsung tidak terlalu lama (beberapa hari atau minggu saja).
11
2. Prevalensi Point prevalence, jlh seluruh penderita (lama+baru) yg ada pada suatu saat tertentu
12
Periode prevalence, jlh seluruh penderita (lama+baru) yg ada pada suatu periode tertentu
13
Contoh soal : 1. Jika kita ingin memperoleh ukuran insidensi kanker payudara diantara wanita di Tanah Datar selama tahun 2009, kasus kanker payudara mana yg kita jadikan penyebut (numerator) ? Seluruh kasus kanker payudara diantara wanita Tanah Datar tahun 2009 ?, atau Hanya kasus baru kanker payudara diantara wanita Tanah Datar tahun 2009 ?
14
Contoh soal : 2: Diasumsikan kita mulai menghitung insidensi pada 1 januari 2009, wanita Tanah Datar mana yg kita jadikan pembilang (denuminator) dari ukuran insidensi ? a. Seluruh wanita di Tanah Datar pada tahun 2009. b. Hanya wanita tanpa kaknker payudara di Tanah Datar pada 1 Januari 2009
15
Contoh soal : 3: Untuk menghitung prevalensi kanker payudara pada wanita Tanah Datar tahun 2009, kasus kanker payudara mana yang kita jadikan numeraor ? a. Seluruh kasus kanker payudara yg dilaporkan pad atahun 2009? b. Seluruh kasus kanker payudara yg pernah dilaporkan?, atau c. Seluruh kasus kanker payudara yg masih bertahan yg pernah dilaporkan?
16
Contoh soal : 4. Selama tahun 2009 ditemukan 100 org penderita TB baru. Penderita TB tahun 2008 yang masih bertahan sampai tahun orang. Jumlah pddk Tanah Datar orang. Hitung angka insidensi dan prevalensi TB di Kab Tanah Datar tahun 2009!
17
Manfaat ukuran insidensi
Angka insidensi dapat digunakan untuk mengukur angka kejadian penyakit. Perubahan angka insidensi dapat menunjukkan adanya perubahan faktor2 penyebab penyakit, yaitu fluktuasi alamiah dan adanya program pencegahan. Dalam penelitian epidemiologi sebab akibat Perbandingan antara berbagai populasi dengan pemamapan yg berbeda Untuk mengukur besarnya risiko determinan tertentu
18
Manfaat ukuran prevalensi
Menggambarkan tingkat keberhasilan program pemberantasan penyakit Penyusunan perencanaan pelayanan kesehatan, misal obat, tenaga, ruangan Menyatakan banyaknya kasus yg dapat didiagnosis
19
C. Ukuran Mortalitas Crude Death Rate (CDR)
Angka kematian kasar adalah jumlah kematian yg dicatat selama satu tahun per 1000 penduduk di pertengahan tahun yg sama AKK/CDR = Jmh kematian yg dicatat dlm thn kalender X 1000 Jlh seluruh pddk pertengahan thn yg sama
20
Age Specific Death Rate (ASDR)
Jmlh kematian pada kelompok umur tertentu tertentu selama satu tahun Jmlh penduduk golongan umur tersebut pada pertengahan tahun yg sama / 1000 Bisa interval 5 tahunan atau Kelompok umur khusus spt : neonatus, bayi, balita, usia sekolah, dewasa, usia lanjut, dll.
21
Kelompok Umur Cth : Angka Kematian Bayi (Infant Mortality Rate)
Dirinci lagi menjadi : Perinatal Mortality Rate (Kematian Janin >28 mgg Usia Kehamilan s.d bayi berusia 7 hari) Neonatal Mortality Rate (0 – 1 bulan) Post Neonatal Mortality Rate (1 bulan – 1 tahun)
22
A. Infant mortality rate (IMR)
Examples for age spesific death rates: A. Infant mortality rate (IMR) Jmlh kematian bayi selama satu tahun Jmlh bayi lahir hidup di area yg sama dan tahun yg sama / 1000 Tinggi rendahnya IMR berkaitan dengan Penyakit infeksi yg dapat dicegah dgn imunisasi Diare yg dapat menyebabkan dehidrasi Personal higiene dan sanitasi lingkungan yg kurang memadai, serta sosial ekonomi rendah Gizi buruk dan daya tahan tubuh yg menurun
23
B. Perinatal mortality rate (PMR)
Examples for age spesific death rates: B. Perinatal mortality rate (PMR) Jmlh kematian janin pada kehamilan 28 mgg atau lebih + jumlah kematian bayi < 7 hari selama satu tahun Jmlh bayi lahir hidup di area yg sama dan tahun yg sama / 1000 Tinggi rendahnya PMR berkaitan dengan Banyaknya bayi Berat Badan Lahir Rendah (BBLR) Status gizi ibu dan bayi Keadaan sosial ekonomi Penyakit infeksi terutama ISPA Pertolongan persalinan
24
C. Neonatal mortality rate (NMR)
Examples for age spesific death rates: C. Neonatal mortality rate (NMR) Jmlh kematian bayi berumur < 28 hari selama satu tahun Jmlh bayi lahir hidup di area yg sama dan tahun yg sama / 1000 Tinggi rendahnya NMR berguna untuk mengetahui : Tinggi randahnya usaha perawatan antenatal/ selama kehamilan dan post natal/perawatan bayi setelah lahir Program imunisasi Pertolongan persalinan Penyakit infeksi terutama ISPA
25
D. Post Neonatal mortality rate (PNMR)
Examples for age spesific death rates: D. Post Neonatal mortality rate (PNMR) Jmlh kematian bayi berumur > 28 hari sampai 1 tahun selama satu tahun Jmlh bayi lahir hidup di area yg sama dan tahun yg sama / 1000 Tinggi rendahnya PNMR berkaitan dengan : Penyakit infeksi yang sebenarnya dapat dicegah dengan imunisasi Diare yg mengakibatkan dehidrasi Lingkungan dan higiene sanitasi yg kurang memadai Gizi buruk dan penurunan daya tahan tubuh
26
E. Angka Kematian Balita (Akaba)
Examples for age spesific death rates: E. Angka Kematian Balita (Akaba) Jmlh kematian balita dalam 1 tahun Jmlh balita di area yg sama dan tahun yg sama / 1000 Tinggi rendahnya Akaba berkaitan dengan : Program pelayanan kesehatan Program imunisasi Program perbaikan gizi Tingkat pendidikan, keadaan sosial ekonomi, dll
27
F. Maternal Mortality Rate (MMR)
Examples for age spesific death rates: F. Maternal Mortality Rate (MMR) Jmlh kematian ibu karena kehamilan, persalinan dan masa nifas selama satu tahun Jmlh kelahiran hidup pada tahun dan wilayah yg sama / Tinggi rendahnya MMR berkaitan dengan Keadaan sosial ekonomi Kesehatan ibu selama hamil, bersalin dan nifas Pelayanan kesehatan terhadap ibu Pertolongan persalinan dan perawatan masa nifas
28
Cause Specific Mortality Rate (CSMR)
Jmlh kematian karena sebab penyakit tertentu selama satu tahun Jmlh penduduk pada pertengahan tahun yg sama / Jumlahnya sangat kecil dibandingkan jumlah penduduk Maka digunakan konstanta untuk menghindari angka desimal
29
Case Fatality Rate (CFR)
Jmlh kematian karena penyebab penyakit tertentu dlm suatu lingkungan dan kurun waktu tertentu Jmlh penderita penyakit tsb dlm lingkungan dan kurun waktu yg sama / 1 000 Lebih menunjukkan keganasan penyakit tersebut pada kondisi atau lingkungan tertentu Seperti kematian saat Kejadian Luar Biasa (KLB) penyakit tertentu
30
Contoh soal : Selama tahun 2009 di Tanah Datar dilaporkan kasus DBD. 100 org diantaranya meninggal dunia. Jumlah pddk Tanah Datar orang. Hitung angka : 1. Cause Spesific Mortality Rate (CSMR) 2. Case Fatality Rate (CFR)
31
D. Ukuran Fertilitas Crude Birth Rate (CBR)
Angka kelahiran kasar adalah jumlah kelahiran yg dicatat selama satu tahun per 1000 penduduk di pertengahan tahun yg sama Jmlh kelahiran hidup selama satu tahun Jmlh penduduk pada pertengahan tahun yg sama / 1000
32
Keterbatasan CBR Perhitungan CBR ini sederhana, mudah dihitung tetapi kasar. Perhitungan ini disebut perhitungan kasar karena yang menjadi pembagi adalah seluruh penduduk baik laki-laki maupun perempuan seluruh usia termasuk yang bukan perempuan usia reproduksi (15-49 tahun).
33
Age Specific Birth Rate (ASBR)
Jumlah kelahiran hidup oleh ibu pada golongan umur tertentu yg dicatat selama satu tahun per 1000 penduduk wanita golongan umur tertentu pada pertengahan tahun yg sama Jmlh kelahiran hidup oleh ibu golongan umur tertentu selama satu tahun Jmlh penduduk wanita golongan umur tertentu pada pertengahan tahun yg sama / 1000
34
Age Specific Birth Rate (ASBR)
Biasanya dengan interval 5 tahun Usia subur = 15 – 49 tahun 7 interval. Dapat disusun menjadi distribusi frekuensi pada setiap golongan umur (interval). Dapat diketahui : umur berapa yang punya tingkat kesuburan yang tinggi.
35
Usia 5/25 x 1000 = 200 per 1000 Usia 10/30 x 1000 = 333 per 1000 Dapat disimpulkan wanita usia tahun. lebih subur daripada usia tahun
36
E. Ukuran Risiko Risiko dapat diartikan sebagai derajad ketidakpastian
Ada kepastian suatu peristiwa tidak akan terjadi Risiko = 1 Terdapat kepastian bahwa suatu peristiwa pasti akan terjadi Besarnya risiko untuk terkena penyakit dapat dibandingkan dengan menghitung besarnya insidensi suatu penyakit antara orang yg terpapar dgn faktor penyebab penyakit tsb dgn yg tidak terpapar
37
1. Risiko Atribut (Attribute Risk/AR)
Selisih angka insidensi antara kelompok terpapar dgn tidak terpapar Dianggap sbg akibat pemaparan oleh faktor penyebab penyakit (atribut) Cth : Hubungan antara merokok dgn kanker paru Dari 100 perokok berat 5 menderita ca paru besar risiko = 5/100 = 0,05 Dari 100 bukan perokok 2 menderita ca paru besar risiko = 2/100 = 0,02 Risiko Atribut = 0,05 – 0,02 = 0,03 3% insidensi ca paru disebabkan oleh kebiasaan merokok
38
Risiko atribut bermanfaat untuk memperkirakan besarnya risiko yg dapat dihindarkan bila ‘atribut’ yg dianggap sbg penyebab penyakit dihindarkan. Cth : Hubungan antara kontrasepsi oral dgn tromboflebitis Dari 1700 pengguna kontrasepsi oral 17 menderita tromboflebitis Dari 1000 yg tdk menggunakan kontrasepsi 5 menderita tromboflebitis Risiko Atribut = (17/1700) – (5/1000) = 0,005 0,5% Risiko tromboflebitis yg dapat dihindarkan dgn tidak menggunakan kontrasepsi oral adalah 0,53%
39
Risko atribut penting diketahui untuk :
Penyuluhan kepada masyarakat ttg manfaat yg diperoleh bila faktor penyebab penyakit dihindarkan Menyusun rencana pencegahan penyakit dgn menghilangkan atau mengurangi ‘atribut’ atau faktor yg dianggap sbg penyebab timbulnya penyakit
40
2. Risiko Relatif (Risk Ratio/RR)
Menghitung rasio antara 2 kelompok Membandingkan insidensi antara kelompok terpapar dgn yg tidak terpapar Cth : Hubungan antara merokok dgn kanker prostat Dari 1000 perokok 90 menderita ca prostat Dari 1000 bukan perokok 30 menderita ca prostat
41
Ca Prostat Jumlah Risiko + - Perokok 90 910 1000 0,09 Bukan perokok 30
Besarnya risiko yg ditanggung oleh perokok untuk terkena ca prostat dibandingkan dgn bukan perokok dapat dijelaskan sbb. Ca Prostat Jumlah Risiko + - Perokok 90 910 1000 0,09 Bukan perokok 30 970 0,03 120 1880 2000 RR=3,0 Kesimpulan : Perokok mempunyai risiko menderita Ca Prostat 3 kali lebih besar dibandingkan dengan bukan perokok
42
3. Odds Ratio (OR) Pada penelitian retrospektif perhitungan risiko relatif hanya berdasarkan perkiraan saja yg disebut odds ratio. Yg dibandingkan bukan angka insidensi tetapi pemaparan Cth : Hubungan antara merokok dgn kanker prostat Dari 1000 perokok 90 menderita ca prostat Dari 1000 bukan perokok 30 menderita ca prostat
43
Ca Prostat Odds + - Perokok 90 910 90/910 Bukan perokok 30 970 30/970
Besarnya risiko yg ditanggung oleh perokok untuk terkena ca prostat dibandingkan dgn bukan perokok dapat dijelaskan sbb. Ca Prostat Odds + - Perokok 90 910 90/910 Bukan perokok 30 970 30/970 90/30 910/970 OR=3,2 Kesimpulan : Besarnya risiko untuk menderita Ca Prostat pada perokok 3,2 kali lebih besar dibandingkan dengan risiko menderita prostat pada yang bukan perokok
44
OR = 90/910 : 30/970 = 90 x 970/30x910 = 87300/27300 = 3,2
45
Thank You
Presentasi serupa
© 2024 SlidePlayer.info Inc.
All rights reserved.