Upload presentasi
Presentasi sedang didownload. Silahkan tunggu
Diterbitkan olehAmirul George Telah diubah "10 tahun yang lalu
1
Sistem Persamaan Linier Penulisan Dalam Bentuk Matriks
Eliminasi Gauss
2
Sistem Persamaan Linier
Suatu sistem persamaan linier (atau himpunan persaman linier simultan) adalah satu set persamaan dari sejumlah unsur yang tak diketahui. Bentuk umum: Sistem ini mengandung m persamaan dengan n unsur yang tak diketahui yaitu x1 ….xn. Bilangan a11 …..amn disebut koefisien dari sistem itu, yang biasanya merupakan bilangan-bilangan yang diketahui. Bilangan-bilangan b1 ….bm juga merupakan bilangan-bilangan yang diketahui, bisa bernilai tidak nol maupun bernilai nol Jika seluruh b bernilai nol maka sistem persamaan tersebut disebut sistem persamaan homogen
3
Sistem Persamaan Linier
Dari sistem persamaan linier diharapkan adanya solusi yaitu satu set nilai dari x1 …xn yang memenuhi sistem persamaan tersebut. Jika sistem ini homogen, ia mengandung solusi trivial (solusi tak penting) yaitu x1 = 0, …., xn = 0. Pertanyaan-pertanyaan yang timbul tentang solusi dari sistem persamaan ini adalah: a). Benar adakah solusi dari sistem ini ? b). Bagaimanakah cara untuk memperoleh solusi? c). Kalau sistem ini mempunyai lebih dari satu solusi, bagaimanakah himpunan solusi tersebut? d). Dalam keadaan bagaimanakah sistem ini tepat mempunyai satu solusi?
4
Sistem Persamaan Linier
Operasi Baris Pada sistem ini kita dapat melakukan operasi-operasi yang disebut operasi baris sebagai berikut: a). Ruas kiri dan ruas kanan dari setiap persamaan dapat dikalikan dengan faktor bukan nol yang sama, tanpa mempengaruhi himpunan sistem persamaan tersebut. b). Ruas kiri dari setiap persamaan dapat dijumlahkan ke ruas kiri persamaan yang lain asal ruas kanannya juga dijumlahkan. Operasi ini tidak mengganggu keseluruhan sistem persamaan tersebut. c). Mempertukarkan tempat (urutan) persamaan tidaklah mengganggu himpunan sistem persamaan.
5
Penulisan Dalam Bentuk Matriks
6
Sistem Persamaan Linier
Penulisan Persamaan Linier Dalam Bentuk Matriks Sistem persamaan linier dapat dituliskan dalam bentuk matriks dengan memanfaatkan pengertian perkalian matriks. Bentuk itu adalah atau secara singkat dengan
7
Sistem Persamaan Linier
Dari cara penulisan tersebut di atas, kita dapat membangun suatu matriks baru yang kita sebut matriks gandengan, yaitu dengan menggandengkan matriks A dengan b menjadi Matriks gandengan ini menyatakan sistem persamaan linier secara lengkap. Operasi-operasi baris pada sistem persamaan linier kita terjemahkan ke dalam matriks gandengan menjadi sebagai berikut a). Setiap elemen dari baris yang sama dapat dikalikan dengan faktor bukan nol yang sama. b). Satu baris boleh dijumlahkan ke baris yang lain. c). Tempat baris (urutan baris) dapat dipertukarkan.
8
Setiap operasi baris akan menghasilkan matriks gandengan baru.
Sistem Persamaan Linier Setiap operasi baris akan menghasilkan matriks gandengan baru. Matriks gandengan baru ini disebut sebagai setara baris dengan matriks gandengan yang lama. Operasi baris dapat kita lakukan lagi pada matriks gandengan baru dan menghasilkan matriks gandengan yang lebih baru lagi dan yang terakhir inipun setara baris dengan matriks gandengan yang lama. Dengan singkat kita katakan bahwa operasi baris menghasilkan matriks gandengan yang setara baris dengan matriks gandengan asalnya. Hal ini berarti bahwa matriks gandengan baru menyatakan sistem persamaan linier yang sama dengan matriks gandengan asalnya.
9
Eliminasi Gauss
10
Sistem Persamaan Linier
Eliminasi Gauss Eliminasi Gauss merupakan langkah-langkah sistematis untuk memecahkan sistem persamaan linier. Karena matriks gandengan merupakan pernyataan lengkap dari suatu sistem persamaan linier, maka eliminasi Gauss cukup dilakukan pada matriks gandengan ini. Contoh: Suatu sistem persamaan linier: Kita tuliskan persamaan ini dalam bentuk matriks:
11
Sistem Persamaan Linier
Matriks gandengnya adalah: Langkah-1: Langkah pertama pada eliminasi Gauss pada matriks gandengan adalah mempertahankan baris ke-1 (disebut mengambil baris ke-1 sebagai pivot) dan membuat suku pertama baris-baris berikutnya menjadi bernilai nol. Pada matriks yang diberikan ini, langkah pertama ini dilaksanakan dengan menambahkan baris ke-1 ke baris ke-2, mengurangkan baris ke-1 dari baris ke-3 dan menambahkan baris ke-1 ke baris ke-4. Hasil operasi ini adalah
12
Sistem Persamaan Linier
Langkah-2: Langkah kedua adalah mengambil baris ke-2 dari matriks gandeng yang baru saja kita peroleh sebagai pivot, dan membuat suku kedua baris-baris berikutnya menjadi nol. Ini kita lakukan dengan mengalikan baris ke-2 dengan 2/3 kemudian menambahkannya ke baris ke-3, dan mengurangkan baris ke-2 dari baris ke-4. Hasil operasi ini adalah
13
Sistem Persamaan Linier
Kalikan baris ke 3 dengan 3 agar diperoleh bilangan bulat
14
Sistem Persamaan Linier
Langkah-3: Langkah ketiga adalah mengambil baris ke-3 sebagai pivot dan membuat suku ke-3 dari baris ke-4 menjadi nol. Ini dapat kita lakukan dengan mengalikan baris ke-4 dengan 11 kemudian menambahkan kepadanya baris ke-3. Hasilnya adalah:
15
Sistem Persamaan Linier
Hasil terakhir langkah ketiga adalah: Matriks gandeng terakhir ini menyatakan bentuk matriks: Matriks terakhir ini menyatakan sistem persamaan linier: yang dengan substitusi mundur akan memberikan:
16
Sistem Tertentu dan Tidak Tertentu
17
Sistem Persamaan Linier
Sistem-sistem Tertentu Dan Tidak Tertentu Sistem tertentu adalah sistem yang memberikan tepat satu solusi. Sistem tertentu terjadi jika unsur yang tak diketahui sama banyak dengan persamaannya, dan persamaan-persamaan ini tidak saling bergantungan. Jika unsur yang tak diketahui lebih banyak dari persamaannya, maka sistem itu menjadi kurang tertentu. Sistem yang kurang tertentu memberikan tidak hanya satu solusi akan tetapi banyak solusi. Jika persamaan lebih banyak dari unsur yang tak diketahui, sistem menjadi tertentu berlebihan. Sistem yang kurang tertentu selalu mempunyai solusi (dan banyak) sedangkan sistem tertentu dan tertentu berlebihan bisa memberikan solusi bisa juga tidak memberikan solusi.
18
Sistem Persamaan Linier
Contoh Sistem Persamaan Yang Memberikan Banyak Solusi Contoh: Matriks gandeng: Eliminasi Gauss:
19
Matriks gandengan ini menyatakan sistem persamaan :
Sistem Persamaan Linier Matriks gandengan ini menyatakan sistem persamaan : Dari persamaan ke-2 kita mendapatkan yang kemudian memberikan Karena xC tetap sembarang maka kita mendapatkan banyak solusi. Kita hanya akan memperoleh nilai xA dan xB jika kita menentukan nilai xC lebih dulu
20
Sistem Persamaan Linier
Contoh Sistem Yang Tidak Memberikan Solusi Contoh: Matriks gandeng dan eliminasi Gauss memberikan
21
Sistem Persamaan Linier
Sistem persamaan dari matriks gandeng terakhir ini adalah Kita lihat di sini bahwa penerapan eliminasi Gauss pada akhirnya menghasilkan suatu kontradiksi yang dapat kita lihat pada baris terakhir. Hal Ini menunjukkan bahwa sistem persamaan yang sedang kita tinjau tidak memberikan solusi.
22
Sistem Persamaan Linier
Bentuk Eselon Bentuk matriks pada langkah terakhir eliminasi Gauss, disebut bentuk eselon. Dari contoh di atas, bentuk eselon matriks koefisien dan matriks gandengannya adalah dan Secara umum bentuk eselon matriks gandengan adalah
23
Perhatikan bentuk ini:
Sistem Persamaan Linier dan sistem yang telah tereduksi pada langkah akhir eliminasi Gauss akan berbentuk dengan , dan r n Perhatikan bentuk ini: a). Jika dan sama dengan nol atau tidak ada, maka sistem persamaan ini akan memberikan tepat satu solusi. b). Jika dan sama dengan nol atau tidak ada, maka sistem persamaan ini akan memberikan banyak solusi. c). Jika ataupun dan tidak sama dengan nol atau mempunyai nilai, maka sistem persamaan ini tidak memberikan solusi.
24
Sistem Persamaan Linier
Jadi suatu sistem persamaan akan memberikan solusi jika sama dengan nol atau tidak ada. Pada suatu sistem persamaan yang memberikan solusi, ketunggalan solusi terjadi jika Jika persamaan akan memberikan banyak solusi. Nilai r yang dimiliki oleh matriks gandengan ditentukan oleh banyaknya vektor baris yang bebas linier dalam matriks gandeng. Pengertian tentang kebebasan linier vektor-vektor kita bahas berikut ini.
25
Bebas Linier Dan Tak-bebas Linier Vektor-Vektor
26
Sistem Persamaan Linier
Bebas Linier Dan Tak-bebas Linier Vektor-vektor Misalkan adalah vektor-vektor baris dari suatu matriks A =[abk]. Kita tinjau suatu persamaan vektor Apabila persamaan vektor ini terpenuhi hanya jika semua koefisien (c1 cm) bernilai nol, maka vektor-vektor baris tersebut adalah bebas linier. Jika persamaan vektor tersebut dapat dipenuhi dengan koefisien yang tidak semuanya bernilai nol (artinya setidak-tidaknya ada satu koefisien yang tidak bernilai nol) maka vektor-vektor itu tidak bebas linier.
27
karena koefisien-koefisien ini tidak seluruhnya bernilai nol
Sistem Persamaan Linier Jika satu himpunan vektor terdiri dari vektor-vektor yang bebas linier, maka tak satupun dari vektor-vektor itu dapat dinyatakan dalam kombinasi linier dari vektor yang lain. Hal ini dapat dimengerti karena dalam persamaan tersebut di atas semua koefisien bernilai nol untuk dapat dipenuhi. Jika vektor-vektor tidak bebas linier maka nilai koefisien pada persamaan tersebut di atas (atau setidak-tidaknya sebagian tidak bernilai nol) maka satu vektor dapat dinyatakan sebagai kombinasi linier dari vektor yang lain. Vektor a1 misalnya, dapat dinyatakan sebagai karena koefisien-koefisien ini tidak seluruhnya bernilai nol
28
Sistem Persamaan Linier
Contoh: Dua vektor baris dan Vektor a1 dan a2 adalah bebas linier karena hanya akan terjadi jika Ambil vektor ketiga Vektor a3 dan a1 tidak bebas linier karena kita dapat menyatakan a3 sebagai Vektor a1, a2 dan a3 juga tidak bebas linier karena kita dapat menyatakan a3 sebagai Akan tetapi jika kita hanya melihat a3 dan a2 saja, mereka adalah bebas linier.
29
Rank Matriks
30
Sistem Persamaan Linier
Rank Matriks Dengan pengertian tentang vektor yang bebas linier, didefinisikan rank matriks. Banyaknya vektor baris yang bebas linier dalam suatu matriks A = [abk] disebut rank matriks A disingkat rank A. Jika matrik B = 0 maka rank B adalah nol. Bagaimana menentukan rank suatu matriks? Operasi baris pada suatu matriks menghasilkan matriks yang setara baris dengan matriks asalnya. Hal ini berarti pula bahwa rank matriks baru sama dengan rank matriks asalnya. Dengan perkataan lain operasi baris tidak mengubah rank matriks. Jadi rank suatu matriks dapat diperoleh melalui operasi baris, yaitu sama dengan rank matriks yang dihasilkan pada langkah terakhir eliminasi Gauss. Bentuk eselon matriks yang diperoleh pada langkah terakhir eliminasi Gauss, mengandung vektor-vektor baris yang bebas linier karena vektor yang tak bebas linier telah tereliminasi.
31
Sistem Persamaan Linier
Contoh: Bentuk eselon matriks koefisien dan matriks gandengannya dari sistem persamaan yang memberikan solusi tunggal dalam contoh, adalah dan Dalam kasus ini rank matriks koefisien sama dengan rank matriks gandengan, yaitu 4. Selain dari pada itu rank matriks sama dengan banyaknya unsur yang tak diketahui yaitu 4
32
Sistem Persamaan Linier
Contoh: Bentuk eselon matriks koefisien dan matriks gandengannya dari sistem persamaan yang memberikan banyak solusi, adalah dan Dalam kasus ini rank matriks koefisien sama dengan rank matriks gandengan, yaitu 2. Akan tetapi rank matriks ini lebih kecil dari banyaknya unsur yang tak diketahui.
33
Sistem Persamaan Linier
Contoh: Bentuk eselon matriks koefisien dan matriks gandengannya dari sistem persamaan yang tidak memberikan solusi, adalah dan Dalam kasus ini rank matriks koefisien tidak sama dengan rank matriks gandengan. Rank matriks koefisien adalah 2 sedangkan rank matriks gandengannya adalah 3. Ketidak samaan rank dari kedua matriks ini menunjukkan tidak adanya solusi.
34
Apa yang kita amati dalam contoh-contoh di atas ternyata berlaku umum.
Sistem Persamaan Linier Apa yang kita amati dalam contoh-contoh di atas ternyata berlaku umum. a). agar suatu sistem persamaan memberikan solusi maka rank matriks koefisien harus sama dengan rank matriks gandengannya; b). agar sistem persamaan memberikan solusi tunggal maka rank matriks koefisien harus sama dengan banyaknya unsur yang tak diketahui; c). jika rank matriks koefisien lebih kecil dari banyaknya unsur yang tak diketahui maka akan diperoleh banyak solusi.
35
Sistem Persamaan Linier
Course Ware Sistem Persamaan Linier Sudaryatno Sudirham
Presentasi serupa
© 2024 SlidePlayer.info Inc.
All rights reserved.