Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

Form , Source and function in Plant

Presentasi serupa


Presentasi berjudul: "Form , Source and function in Plant"— Transcript presentasi:

1 Form , Source and function in Plant
Ca, Mg and S in Soil Form , Source and function in Plant

2 Secondary Nutrient Form

3 1. Essential Nutrietns of Plants
Chemical Atomic Ionic forms Approximate dry Element symbol weight Absorbed by plants ____ concentration_____ Mccronutrients Nitrogen N NO3-, NH % Phosphorus P PO43-, HPO42-, H2PO % Potassium K K % Magnesium Mg Mg % Sulfur S SO % Calcium Ca Ca % Micronutrients Iron Fe Fe2+, Fe ppm Manganese Mn Mn ppm Zinc Zn Zn ppm Copper Cu Cu ppm Boron B BO32-, B4O ppm Molybdenum Mo MoO ppm Chlorine Cl Cl ppm Essential But Not Applied Carbon C CO % Hydrogen H H2O % Oxygen O O2, H2O % ________________________________________________________________ Plant tissues also contain other elements (Na, Se, Co, Si, Rb, Sr, F, I) which are not needed for the normal growth and development.

4 MACRONUTRIENTS – SECONDARY
Managing Nutrients on Wisconsin Soils March 22 & 23, 2005 MACRONUTRIENTS – SECONDARY Element Main Function Primary Source Approx. Conc. in Plants Calcium (Ca) Structural component of cell walls; cell elongation; affects cell permeability Soil minerals, limestone 0.1-3% Magnesium (Mg) Component of chlorophyll; enzyme activator; cell division Soil minerals, dolomitic limestone 0.05-1% Sulfur (S) Constituent of proteins; involved in respiration and nodule formation Soil organic matter, rainwater %

5 Form , Source and function in Plant
Calsium Form , Source and function in Plant

6 FUNGSI HARA KALSIUM KALSIUM (Ca) Penyusun lamela tengah dinding sel.
Kofaktor bbrp ensim dlm hidrolisis ATP & fosfolipida. Berperan sbg messenger ke 2 dlm pengaturan metabolisme.

7 1) Soil Relations Calcium (Ca)
- Present in large quantities in earth’s surface (~1% in US top soils) - Influences availability of other ions from soil 2) Plant Functions - Component of cell wall - Involved in cell membrane function - Largely present as calcium pectate in meddle lamela Calcium pectate is immobile in plant tissues 3) Deficiency and Toxicity - Deficiency symptoms in young leaves and new shoots (Ca is immobile) Stunted growth, leaf distortion, necrotic spots, shoot tip death Blossom-end rot in tomato - No Ca toxicity symptoms have been observed 4) Fertilizers - Agricultural meal (finely ground CaCO3·MgCO3) - Lime (CaCO3), Gypsum (CaSO4) - Superphosphate - Bone meal-organic P source

8 Calcium (Ca) Plant available form: Ca+2
Plant immobile, very limited soil mobility Functions: Cell membrane integrity, co-enzyme Excess: Mg uptake interference Deficiency: Inhibited bud growth, root tip death, mature leaf cupping, weak growth, blossom end rot and pits on fruits Notes: Usually corrected with pH, Water stress affects Ca relationships.

9 Calcium Is mobile in the soil Is held on the cation exchange
Moves to root by mass flow Can be leached – particularly sandy soils Deficiency sometimes seen in dry soils when there isn’t enough water to transport Ca Is held on the cation exchange Low pH soils likely to be low in Ca

10 Factors Affecting Ca Availability
Total Ca supply & % Ca saturation of CEC Low CEC soil with 1000 ppm Ca supply more Ca to plants than high CEC soil with 2000 ppm Ca Soil pH Low soil pH impedes Ca uptake Type of soil clay 2:1 clays require > Ca saturation of CEC compared to 1:1 clays to supply adequate Ca Ratio of solution Ca2+ to other cations Uptake depressed by NH4+, K+, Mg+, Mn2+, Al2+ Absorption increased by NO3-

11 Calcium Deficiency — Tip leaves small, rolled and scorched
Growth fairly good; young leaves chlorotic, forward roll and marginal scorch. This plant failed to form tubers of appreciable size. Potato Plant in Sand Culture

12 Blossom End Rot of Tomato Calcium Deficiency
Right-Hydroponic tomatoes grown in the greenhouse, Left-Blossom end rot of tomato fruits induced by calcium (Ca++) deficiency

13 Influence of Calcium on Root Induction on Rose Cuttings

14 Form , Source and function in Plant
Magnesium Form , Source and function in Plant

15 FUNGSI HARA MAGNESIUM MAGNESI- UM (Mg) Dibutuhkan oleh beberapa ensim yg terlibat dlm pemindahan fosfat. Penyusun molekul klorofil.

16 1) Soil Relations Magnesium (Mg)
- Present in soil as an exchangeable cation (Mg2+) - Similar to Ca2+ as a cation 2) Plant Functions - Core component of chlorophyll molecule - Catalyst for certain enzyme activity 3) Deficiency and Toxicity - Deficiency: Interveinal chlorosis on mature leaves (Mg is highly mobile) - Excess: Causes deficiency symptoms of Ca, K 4) Fertilizers - Dolomite (mixture of CaCO3·MgCO3) - Epsom salt (MgSO4) - Magnesium nitrate [Mg(NO3)2] - Magnesium sulfate (MgSO4)

17 Magnesium (Mg) Plant available form: Mg+2
Plant mobile, limited soil mobility Functions: Chlorophyll compound, co-enzyme, seed germination Excess: Ca uptake interference Deficiency: Growth Reduction, marginal chlorosis, interveinal chlorosis in mid and lower leaves, reduced seed production, cupped leaves Notes: leaches with irrigation, usually corrected with Lime in fields, chelates and sulfates in pots

18 Magnesium Moves to root via mass flow & diffusion
Leaches somewhat more than Ca Held on the cation exchange Deficiency occurs in low pH soils

19 Factors Affecting Mg Availability
Total Mg supply CEC pH Excess K applications on sandy soil Cause Mg leaching K interferes with Mg uptake Continuous use of high Ca lime increases Ca:Mg ratio May induce Mg deficiency in certain crops NH4+ induced Mg deficiency High rates of NH4+ on soils with low exchangeable Mg

20 Magnesium (Mg) Deficiency on Poinsettia
Interveinal Chlorosis on Mature Leaves

21 Magnesium Deficiency Chlorosis and necrosis of leaves defoliation
Growth fairly good foliage chlorotic and with intervenal necrosis death of older foliage

22 Magnesium Deficiency Purple tinting
intervenal necrosis developing from marginal areas. Apple Leaves

23 Calcium & Magnesium Cycle
From Havlin et al., 2005

24 Form , Source and function in Plant
Sulfur Form , Source and function in Plant

25 FUNGSI HARA BELERANG BELERANG (S)
Penyusun asam amino sistein, sistin, metionin & protein. Penyusun asam lipoat, koensim A, tiamin, pirofosfat, glutation, biotin, adenosine-5’-fosfosulfat & 3-fosfoadenosin.

26 1) Soil Relations Sulfur (S)
- Present in mineral pyrite (FeS2, fool’s gold), sulfides (S-mineral complex), sulfates (involving SO4-2) - Mostly contained in organic matter - Acid rain provides sulfur 2) Plant Functions - Component of amino acids (methionine, cysteine) - Constituent of coenzymes and vitamins - Responsible for pungency and flavbor (onion, garlic, mustard) 3) Deficiency and Toxicity - Deficiency: light green or yellowing on new growth (S is immobile) - Toxicity: not commonly seen 4) Fertilizers - Gypsum (CaSO4) - Magnesium sulfate (MgSO4) - Ammonium sulfate [(NH4)2SO4] - Elemental sulfur (S)

27 Sulfur (S) Plant available form: SO4- Plant immobile, very soil mobile
Functions: structural compound of AA’s, etc. and chlorophyll production Excess: very limited information Deficiency: Rarely deficient due to pollution and impurities: symptoms include growth reduction, overall chlorosis Notes: leaches with irrigation, usually corrected with other nutrients, true toxicity is rare and difficult to control, very high levels in low pH soils

28 Sulfur Forms in Soils Inorganic S
Sulfate dominates (SO42-) Sulfides (flooded conditions) Elemental S Thiosulfates Range in oxidation states (-2 to +6) > 90% of total S in most soils is organic Carbon-bonded S Ester sulfates (organic sulfates) 30 to 75% of organic S

29 Carbon-bonded S

30 Volatile S CS2 CH3SH CH3SCH3
Volatilization

31 Sulfur Mineralization
Biological Cleavage of C-S bonds to produce S2- Cysteine desulfhydolase Driven by need for C Biochemical Cleavage of C-O-S (ester) bonds to produce SO42- Sulfohydrolases (sulfatases), associated with microbial cell walls Driven by need for S, regulated by SO42- C:S ratio C: S < 200, net S mineralization; > 400 immobilization Volatilization Anaerobic mineralization

32 Immobilization of S (assimilation)
Serine SO32- S2- Cysteine PAP + Tr(ox) ATP PPi 3NADPH 3NADP Tr(red) SO42- SO42- APS PAPS COS Cysteine ATP ADP Pi APS GSH O-acetyl-serine Acetate + H2O AMP + H+ GSSO3- GSSH Cysteine 6Fd(red) +7H+ 6Fd(ox) +3H2O GS

33 Microbial S Oxidation SO42- S2- SO32- APS S0 S2O32- 4e- AMP ADP 2e- Pi
Chemoautotrophic (Lithotrophic) Energy generated ( kcal mol-1 S22-; kcal mol-1 S0) Acidifying (2H+ per S0) Generally aerobic; attached to S granules Photoautotrophic (Lithotrophic) Chemoheterotrophic (Organotrophic) No energy produced; dominant in neutral to alkaline soils Many bacteria (Arthrobacter, Bacillus, Pseudomonas) Many fungi (Aspergillus, Mucor, Trichoderma)

34 Sulfur Deficiency in Corn.
Overall light green color, worse on new leaves during rapid growth. 34

35 AVAILABILITY OF NUTRIENTS INFLUENCES GROWTH AND PRODUCTIVITY

36 MATURNUWUN

37 Form , Source and function in Plant
HARA MIKRO Form , Source and function in Plant

38 1. Nutrietns of Plants Mccronutrients
Chemical Atomic Ionic forms Approximate dry Element symbol weight Absorbed by plants ____ concentration_____ Mccronutrients Nitrogen N NO3-, NH % Phosphorus P PO43-, HPO42-, H2PO % Potassium K K % Magnesium Mg Mg % Sulfur S SO % Calcium Ca Ca % Micronutrients Iron Fe Fe2+, Fe ppm Manganese Mn Mn ppm Zinc Zn Zn ppm Copper Cu Cu ppm Boron B BO32-, B4O ppm Molybdenum Mo MoO ppm Chlorine Cl Cl ppm Essential But Not Applied Carbon C CO % Hydrogen H H2O % Oxygen O O2, H2O % ________________________________________________________________ Plant tissues also contain other elements (Na, Se, Co, Si, Rb, Sr, F, I) which are not needed for the normal growth and development.

39 SOIL pH AND MINERAL NUTRITION
Different types of plants have different soil pH requirements (truffle link)

40 UNSUR MIKRO Menjadi perhatian sebab :
Diangkut Tanaman Penggunaan varietas unggul & pupuk makro Penggunaan pupuk makro analisis tinggi Kemampuan mengenal gejala kekahatan unsur Keadaan unsur mikro dapat membatasi pertumbuhan tanaman : Tanah Pasir Tanah organik/Gambut Tanah ber-pH tinggi Tanah yang terus menerus ditanami dan dipupuk berat

41 Besi (Fe) Di kerak bumi + 5 % Fe dalam tanah + 3,8 % Mineral mengandung Fe : olivin, pirit, siderit, hematit, geotit, magnetit, limonit Kahat Fe : - Tanah pasiran Tanah organik Larutan Fe tanah - diserap sebagai Fe+2 - dapat ditransportasi ke akar sebagai kelat - diserap secara mass flow & difusi - tidak mobil dalam tanaman

42 Faktor-faktor yang mempengaruhi ketersediaan Fe :
Keseimbangan ion Pengaruh keseimbangan ion-ion Cu, Fe & Mn Rasio Fe / (Cu + Mn) rendah  kahat Fe pH Kahat Fe  pada daerah pH tinggi ( pada tanah calcareus) tanah masam dengan total Fe Kelarutan Fe minimum pada pH 7,4 – 8,5 Daerah dingin, curah hujan tinggi, kelembaban tinggi, aerasi kurang  kahat Fe Penambahan b.o. Mengatasi kekurangan Fe Hubungan dengan unsur lain Nutrisi N mempengaruhi klorosis Fe Kahat Fe atau Zn menggaggu pergerakan Fe dalam tanaman

43 Peran dan Defisiensi Fe
Peran Fe : Mengaktifkan sistem enzim-enzim (fumarie, hidrogenase, katalase, oksidase & sitokrom) Sintesa protein kloroplas Defisiensi Fe ; Nampak pada daun muda Klorosis di antara tulang daun muda  menyebar ke helai daun  daun putih

44 Mangan (Mn) Mangan (Mn) Di kerak bumi ppm Dalam tanah 20 – ppm (rata-rata 600 ppm) Terkandung dalam feromagnesium, pirolusit, hausmanit, manganit, rodokrosit, rodonit Daerah yang kurang Mn : Tanah gambut di atas calcareus Aluvial debuan, tanah lempungan Tanah calcareus drainase jelek Tanah pasiran dengan mineral masam Bentuk Mn tanah Larutan Mn+2 Organik – Mn Mn oksida

45 Faktor-faktor yang mempengaruhi ketersediaan Mn :
Keseimbangan dengan ion logam berat lain pH dan karbonat pengapuran  Mn rendah Bahan organik, Menambah Mn Korelasi dengan unsur lain Sumber N mempengaruhi ketersediaan Mn ` Penambahan NH4Cl (NH4)2SO4 NH4NO Penyerapan Mn meningkat NH4H2PO4 CO(NH2)2 Musim & iklim Mikroorganisme

46 Larutan Mn Sebagai larutan ion Konsentrasi berkurang dengan naiknya pH [Mn] larutan 0,01 – 13 ppm pada tanah masam – netral (Umumnya 0,01 – 1 ppm) Peranan Mn :  Mengaktifkan enzim-enzim Defisiensi Mn :  Klorosis di antara tulang daun

47 Seng (Zn) Litosfer + 80 ppm Tanah 10 – 300 ppm (rata-rata 50 ppm
Daerah kurang Zn : Tanah berpasir masam Tanah netral / basa Tanah calcareus >>> lempung & debu >>> P tersedia >>> tanah organik Bentuk Zn : Larutan Zn+2 Zn dapat ditukarkan Zn diadsorbsi Zn organik Zn yang mensubstitusi Mg di kisi krist

48 Faktor-faktor yang mempengaruhi ketersedian Zn :
pH -> pH tinggi  Zn rendah Adsorbsi oleh mineral oksida Adsorbsi oleh mineral lempung Adsorbsi oleh mineral karbonat Membentuk kompleks dengan b.o. Interaksi dengan unsur lain P >>  kahat Zn Sulfat / gipsum >>>  Mn <<<  Zn tinggi N  pupuk N meningkatkan kebutuhan Zn Jumlah dan sifat sumber N berhubungan dengan ketersediaan Zn Pupuk N masam meningkatkan penyerapan Zn netral / basa  Zn turun Penggenangan  Anaerob  kahat Zn Iklim yang dingin  kahat Zn

49 Peranan Zn :  Aktifator enzinm-enzim
Defisiensi Zn : Pada daun muda Klorosis di antara tulang daun Pertumbuhan tunas terhambat Pada jagung dan sorghum  pita putih sebelah, menyebelah tulang daun

50 B diserap dalam bentuk BO3-3 melalui mass flow & difusi tidak mobil
Boron (B) Unsur hara mikro non esensial valensi +3 Radius ion sangat kecil [B] dalam tanah 2 – 200 ppm (rata-rata 7 – 80 ppm) Hanya < 5 % yang tersedia bagi tanaman Bentuk B dalam tanah Dalam batuan dan mineral Diadsorbsi di permukaan lempung dan Fe hidrous & oksida Al Bergabung dengan b.o. Sebagai H3BO3 dan B(OH4)- bebas dalam larutan tanah B diserap dalam bentuk BO3-3 melalui mass flow & difusi tidak mobil

51 Faktor-faktor yang mempengaruhi ketersediaan B :
Tekstur tanah Tekstur kasar, drainase baik, tanah pasiran  B <<< Jumlah dan tipe lempung [B] tersedia >>> pada tanah berat dp tanah kasar Illit, montmorilonit adsorbsi B > kaolinit pH tanah dan pengapuran pH tinggi  B rendah Penyerapan B tinggi pada pH 6,3 – 6,5 Pengapuran tinggi  B rendah sebab Al(OH)3 mengadsorbsi B lebih banyak Bahan organik B dan b.o.  kompleks (sumber B pada tanah masam) Pemberian b.o. Meningkatkan B tanah Hubungan dengan unsur lain Ca, Ca rendah B rendah demikian juga dengan Overlime  B terbatas K, Pada tanah B sangat rendah, dengan pemberian K maka gejala kahat B menonjol N, Pemberian N mengontrol kelebihan B dalam jeruk tanaman lain Kelembaban tanah Kahat B pada musim kering / kelembaban rendah

52 Faktor tanaman  tiap tanaman berbeda-beda kebutuhan B
Bit gula Apel, asparagus, brokoli, kubis  perlu B banyak Peran B dalam tanaman : Metabolisme karbohidrat dan pergerakan gula Perkembangan sel Berperan dalam sistem enzim Kekurangan B : Pada pucuk-pucuk muda Daun muda hijau pucat (terutama dasarnya) Jaringan pada pangkal daun pecah, bila tumbuh seakan terpilin

53 Tembaga (Cu) Di kerak bumi 55 – 70 ppm Batuan beku 10 – 100 ppm
Batuan sedimen 4 – 45 ppm Dalam tanah 1 – 40 ppm (rata-rata 9 pmm) 1 – 2 pmm  kahat Mineral yang mengandung Cu : Kalkoporit (CuFeS2) Kalkosit (Cu2S) Bornit (CuFeS4) Mineral sekunder yang mengandung Cu dalam bentuk-bentuk oksida, karbonat, silikat, sulfat, clorit Kahat Cu : histosol

54 Faktor-faktor yang mempengaruhi ketersediaan Cu :
Tekstur Tanah pasir podsol  Cu rendah Tanah pasir calcareus  Cu rendah pH pH tinggi  adsorbsi koloid tinggi  Cu rendah Interaksi dengan unsur hara lain Aplikasi pupuk N  defisiensi Cu lebih buruk Tingginya konsentrasi Al dan Zn akan menekan penyerapan Cu oleh tanaman lain Penanaman tanaman pada residu tanaman lain Faktor tanaman

55 Bentuk Cu dalam tanah : Larutan ion dalam tanah
Kisi pertukaran lempung dan ikatan dengan b.o. Akumulasi dalam bahan oksida tanah Kisi adsorbsi spesifik Sisa-sisa biologis & organisme hidup Larutan Cu tanah : Cudd Cu adsorbsi Cu – b.o.

56 Peran Cu :  Sebagai aktivator berbagai enzim (tirosinase, laktose, oksidase asam askorbat, polifenol oksidase) Gejala defisiensi Cu : Daun menggulung Daun mengalami distorsi berkembang tidak normal Layu daun muda

57 Molibdenum (Mo) Di kerak bumi <<<
Di tanah 0,2 – 5 ppm (rata-rata 2 ppm) Bentuk Mo : Tak tertukarkan Anion tertukarkan Ikatan dengan Fe & Al oksida Ikatan dengan b.o. Kahat Mo : Tanah berpasir Tanah masam Larutan Mo :  pH 4,2  MoO4=  diserap tanaman

58 Faktor-faktor yang mempengaruhi :
pH Jumlah Al & Fe oksida Korelasi denagn unsur lain P meningkatkan absorbsi dan translokasi Mo SO4= >>>  Mo turun Transport Mo : - mass flow - difusi Faktor tanaman : - legum sensitif terhadap Mo - padi-padian toleran terhadap Mo <<< Peran Mo : Fikasai N2  legum Asimilasi Reduksi nitrat Sintesa asam amino & protein Defisiensi Mo  klorosis di antara tulang daun

59 Cobalt (Co) Co esensial dalam simbiose fiksasi N2
Dalam hewan, Co  makanan ternak. Perlu Co untuk sintesa B12 [Co] di kerak bumi 40 ppm Granit, feromagnesian Co rendah (1 – 10 pmm) Sandstone, shale Co < 5 ppm Batuan sedimen 20 – 40 ppm [Co] dalam tanah 1 – 70 ppm (rata-rata 8 ppm) < 5 ppm  kahat Perangai Co dalam tanah : Adsorbsi (muskovit > hematit > bentonit = kaolinit) Kompleks dengan b.o. (membentuk kelat)

60 Clor (Cl) Sebagai anion Cl- dalam tanah, pada pH cukup masam sampai mendekati netral Pada kemasaman tinggi diikat / diadsorbsi oleh kaolinit Cl dalam tanah sangat mobil Perpindahan dan akumulasi Cl tergantung sirkulasi air Cl dalam air bawah tanah dapat berpindah secara kapiler ke daerah perakaran Masalah : Jumlah dalam air irigasi Akumulasi di daerah perakaran Sifat fisik tanah & drainase Tingginya water table dan kapiler ke akar Cl < 2 ppm  rendah

61 Crop Response Curves Crop Yield Nutrient Level

62 TERIMAKSIH


Download ppt "Form , Source and function in Plant"

Presentasi serupa


Iklan oleh Google