Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

Physiology Dep. Airlangga University

Presentasi serupa


Presentasi berjudul: "Physiology Dep. Airlangga University"— Transcript presentasi:

1 Physiology Dep. Airlangga University
Physiology of Cell, Body Fluids, Excitable tissue & Muscle Choesnan Effendi Physiology Dep. Airlangga University 2012

2 Episode Kedua

3 Cair Tubuh & Transport bahan melewati membran Body Fluids &
Transport of substances through the cell membrane

4 Cair Tubuh Extracellular Intracellular Interstitial Plasma darah
Transcellular

5 Volume % BB ( Berat Badan ) Indikator
Total body water (cair tubuh total) 60 Deutrium ( D2O / 2H2O ), Tritium ( 3H2O ), Antipyrine Cair Ekstrasellular 20 Inulin *C 14 , Thiosulfate Cair Intrasellular 40 Total body water − Cair Ekstrasellular Plasma darah 5 Evans blue ( T ) , 125I-Albumin Darah 7 – 8 51Cr-labeled red blood cells { Volume plasma darah : ( 100 % − Hct )} Cair Interstisial 15 Volume ekstrasellular − Volume plasma

6

7 Hematocrit Plasma darah Whole blood

8

9 X100 % = 36 – 45 % Volume Eritrosit Volume Darah = Hct

10 = PCV ( Packed Red Cell Volume )
HCT = Hematocrit = PCV ( Packed Red Cell Volume ) Adalah volume kumpulan erithrocytes yang dinyatakan dengan % terhadap volume darah keseluruhan

11 Beberapa cara masuk / keluarnya bahan melewati membran sel
Interstitiel / Plasma darah Cytoplasma Osmosa Diffusi sederhana Diffusi fasilitasi Transport aktif Exocytosis / endocytosis

12

13 Pertukaran cairan didaerah kapiller

14 Ruang interstitiel Sitoplasma / sitosol Plasma darah

15 Fluid exchange : Arteriole  capillary  venule

16 Filtrasi / pertukaran cairan daerah kapiller
Dipengaruhi oleh beberapa faktor : Tekanan onkotik plasma Tekanan onkotik interstisial Tekanan hidrostatik plasma Tekanan hidrostatik interstisial Tekanan hidrostatik plasma = tekanan darah

17 Total 7,3 28,0 Protein plasma Gram %  P
Tekanan kolloid osmotik = Tekanan onkotik Tekanan onkotik plasma darah Oleh karena adanya Protein plasma (  p ) Protein plasma Gram %  P mm Hg Albumin 4,5 21,8 Globulin 2,5 6,0 Fibrinogen 0,3 0,2 Total 7,3 28,0

18 Dari ketiganya, jumlah terbanyak adalah ALBUMIN

19 25 – 1 – 28 + 8 = + 4 Sebagai contoh : Arteriole Venule Kapiller
Interstisial Pint : 1 mm Hg ( hidrostatik ) Part : 37 mm Hg Pven : 17 mm Hg Ponkotik - int : 8 mm Hg Ponkotik - art ( ven ) : 28 mm Hg Pkap : 25 mm Hg NFP ( Net Filtration Pressure ) = Pkap – Pint -  p kap +  p int 25 – 1 – = + 4 + ( positip ) : artinya cairan keluar dari kapiller, sisanya ini akan di absorbsi oleh limfe

20 NFP ( Net Filtration Pressure ) =
Pkap – Pint -  p kap +  p int 25 – 1 – = + 4 + ( positip ) : artinya cairan keluar dari kapiller, sisanya ini akan di absorbsi oleh limfe

21 Mengapa hypoproteinemia
udema Bagaimana mengenai tekanan oncotic protein plasma ???

22 Starving Children in Nigeria

23 Udem akan terjadi apabila
Bendungan vena : tumor, dekompensasi jantung kanan, bendungan aliran limfe Cairan dari intersitial yang menuju plasma < dibanding yang masuk

24 Tekanan osmotik plasma yang rendah
Cairan dari intersitial yang menuju plasma << dibanding yang masuk O.K. Tekanan osmotik plasma yang rendah O.K. Kadar protein plasma yang rendah = HIPOPROTEINEMIA

25 Under nutrition : kurang gizi /rendah protein.
HIPOPROTEINEMIA O.K. Under nutrition : kurang gizi /rendah protein. Sintesa protein ( terutama Albumin ) terganggu : a.l pada penyakit hati : cirrhosis hepatis Sekresi protein : yang seharusnya tidak terjadi , yaitu terjadi proteinuria ( pada nephrotic syndrome )

26 Tekanan osmotik plasma
Berperanan untuk reabsorbsi kembali cairan yang dari interstisial

27 Beberapa cara masuk / keluarnya bahan melewati membran sel

28 Osmosa Diffusi sederhana Diffusi fasilitasi Transport aktif
H2O yg bergerak dari larutan hipotonis kearah hipertonis Osmosa Diffusi sederhana Diffusi fasilitasi Transport aktif Bahan yang terlarut bergerak dari tekanan tinggi ketekanan rendah Seperti No. 2, menggunakan mediator (carrier system) Bahan yang terlarut bergerak dari tekanan rendah ketekanan tinggi, menggunakan mediator, energi ( ATP )

29 Osmosa Diffusi sederhana Diffusi fasilitasi Transport aktif Contoh :
H2O CO2 , O2 , Ureum glukosa, asam amino Na, K, Ca Osmosa Diffusi sederhana Diffusi fasilitasi Transport aktif

30 Mediator = carrier system

31 Simple diffusion, facilitated diffusion & osmosis:
are passive transport, without ATP Active transport, sodium potassium pump, calcium pump, exocytosis: are active, need ATP

32 Facilitated diffusion (also known as facilitated transport or passive-mediated transport) is a process of passive transport, facilitated by integral proteins (mediator). Without energy (ATP)

33 Water move from low concentration to high concentration
Osmosis Osmosis (movement of water across membranes) depends on the relative concentration of solute molecules on either side of the membrane Water move from low concentration to high concentration

34 How do about erythrocytes if in:
hypotonic solution isotonic solution hypertonic solution

35 Crenated / wrinkled ery in hypertonic medium
Normal Ery structure in isotonic medium Swollen ery & rupture in hypotonic medium

36 Normal Ery structure in isotonic medium
Crenated / wrinkled ery in hypertonic medium Swollen ery & rupture in hypotonic medium

37 Simple Diffusion Diffusion; the flow substances or matter from a higher concentration to a lower concentration

38 O2: Diffusion from alveoli into blood stream capillary
CO2: Diffusion from blood capillary into alveoli

39 PO2 alv : 104 mmHG PcO2 alv : 40 mmHG PO2 cap : 40 mmHg PcO2 cap : 46 mmHg

40 Becomes: H+ + HCO3- (bicarbonate ion)
at alveoli or at respiratory membrane O2 diffusion into blood capillary, then enter to the erythrocyte, bound by hemoglobin → HbO2 at tissue; tissue membrane and endothelium capillary CO2 diffusion into blood capillary, then enter to the erythrocyte, bound with H2O → H2CO3 →dissociation Becomes: H+ + HCO3- (bicarbonate ion)

41 , become H2CO3, H2CO3 dissociation,
In blood stream: HCO3- (bicarbonate ion) flow out from erythrocyte into blood stream, to the capillary beds of respiratory membrane at respiratory membrane HCO3- (bicarbonate ion) flow in from blood stream into erythrocyte, then bind with H+ , become H2CO3, H2CO3 dissociation, Become H2O + CO2

42 at respiratory membrane
CO2 flow out to blood (exit from erythrocyte) and then diffusion into alveoli lumen

43 → to tissues and cells all the body
In blood stream: O2 bound by hemoglobin → HbO2 → to tissues and cells all the body

44 at tissue O2 simple diffusion from HbO2 into cytosol, and then into mitochondria. Glucose move into cytosol by glucose transporter (facilitated diffusion)

45 Facilitated Diffusion
Like simple diffusion, but requires interaction of a carrier protein that bind the molecules or ions to aids passage through the membrane Carrier protein = mediator or transporter

46 Facilitated diffusion (also known as facilitated transport or passive-mediated transport) is a process of passive transport, facilitated by integral proteins (mediator). Without energy (ATP)

47 Skeletal Muscle requires GLUT – 4 ,
Glut = Glucose transporter Skeletal Muscle requires GLUT – 4 , GLUT-4 stand-by in cytosol of muscle fiber, they ‘ll move into the membrane if insulin receptors are stimulated by insulin Glut = Glucose transporter is mediator/transporter of glucose enter into cytosol

48 Glucose – facilitated diffusion
Insulin Receptor ( IR ) GLUT- 4 IRS-1 PI3 kinase translocation vesicle contains GLUT- 4 Cell membrane

49 Glucose enter into cytosol of skeletal muscle fiber by;
Signal transduction by insulin Insulin activate insulin rec → form IRS1 IRS1 activates PI3-Kinase PI3-Kinase stimulate translocation vesicle, which contains GLUT-4 GLUT- 4 is mediator / transporter of glucose In skeletal muscle fiber

50 * Signal transduction by insulin ** Facilitated diffusion by GLUT- 4
There are 2 processes: * Signal transduction by insulin ** Facilitated diffusion by GLUT- 4

51 the Pumping of Solutes Against their Gradients
Active Transport Active Transport is the Pumping of Solutes Against their Gradients

52 Active Transport is the Pumping of Solutes Against their Gradients
1. Cell must expend ATP/ energy to pump a molecule across a membrane 2. Performed by embedded proteins 3. Na-K Pump (sodium-potassium)- exchanges Na+ for K+ in animal cells when ATP changes protein conformation by transferring its terminal phosphate group to the transport protein

53

54 Active transport is the movement of a substance against its concentration gradient (from low to high concentration). active transport: energy-requiring, carrier-mediated transport system in which molecules can be moved across cell membrane against electrochemical gradient

55 K+ 140 mEq/L Na+ 14 mEq/L CL- 5 mEq/L
Electrolyte inside & outside the cell membrane Resting Axon – – – – – – – K mEq/L Na+ 14 mEq/L CL- 5 mEq/L Na mEq/L Cl- 120 mEq/L K+ 4 mE/L

56 3 molecules Na+ carried out into extracellular, changed by 2 molecules K+ (carried into cytosol)

57 Exocytosis

58 Exocytosis is the cellular process in which intracellular vesicles in the cytoplasm fuse with the plasma membrane and release or "secrete" their contents into the extracellular space

59 Exocytosis is the process by which cells excrete waste products and other large molecules from the cytoplasm

60

61

62 Exocytosis is the cellular process in which intracellular vesicles in the cytoplasm fuse with the plasma membrane and release or "secrete" their contents into the extracellular space Exocytosis is the process secretion substances into the extracellular space or into the blood stream.

63 Endocytosis is like phagocytosis
Exocytosis is the reverse of endocytosis. Endocytosis is like phagocytosis

64

65

66 Exocytosis

67

68 Exocytosis & Endocytosis Transport Large Molecules
1. Exocytosis- transport vesicles migrate to plasma membrane & fuse & release contents 2. Endocytosis- large molecules enter cells within vesicles pinched inward from the membrane --> Phagocytosis- cell engulfs particles “cell eating” --> Pinocytosis- cell engulfs droplets of extracellular fluid “cell drinking”

69 The other way of transport across membrane

70 Cotransport: also known as coupled transport or secondary active transport, refers to the simultaneous or sequential passive transfer of molecules or ions across biological membranes. Symport Antiport

71 Several types transport across membrane
(facilitated diffusion)

72 Symport

73 Sodium – glucose symport / Na-Glucose co-transport

74

75 or called IONS EXCHANGE
Antiport An antiporter (also called exchanger or counter-transporter) is an integral membrane protein involved in secondary active transport of two or more different molecules or ions (i.e., solutes) across a phospholipid membrane such as the plasma membrane in opposite directions. or called IONS EXCHANGE

76 Na+ Glucose Ca++ Amino acid

77 For example, the Na+/Ca2+ exchanger, used by many cells to remove cytoplasmic calcium, exchanges one calcium ion for three sodium ions

78 the Na+ - Ca2+ exchanger (transporter)

79 The other example Na+ - H+ antiport

80 ( Phosphatidyl Inositol 3’ kinase )
Contoh transduksi signal oleh insulin yang diikuti diffusi fasilitasi glukosa melalui GLUT - 4 GLUT – 4 : Glucose transporter – 4 PI-3 kinase : ( Phosphatidyl Inositol 3’ kinase ) Menyebabkan translokasi vesikel yang berisi GLUT – 4 menuju sel membran

81 Diffusi fasilitasi glukosa
Insulin Receptor ( IR ) GLUT- 4 IRS-1 PI3 kinase Translokasi vesikel yang berisi GLUT- 4 Membran sel otot

82 Apa beda : Diffusi fasilitasi dengan Transport aktif ?

83 Acidosis ? Alkalosis ?

84 terlalu asam : disebut ASIDOSIS
pH darah  7,35 – 7,45 terlalu asam : disebut ASIDOSIS terlalu basa / alkali : disebut ALKALOSIS Diare yang berlebihan ( gastro-enteritis ) pada anak dapat menimbulkan dehidrasi yang disertai asidosis o.k. Kehilangan cairan ( H2O ) + bikarbonat ( HCO3  )

85 Sodium – glucose symporter / Na-Glucose cotranspor

86 Resume Cair Tubuh & Transport bahan melewati membran
Komposisi cair tubuh Cara pengukuran Pertukaran cairan didaerah kapiller Mekanisme terjadinya udem Pengertian osmosa, diffusi, diff fasilitasi, aktif transport

87 Modul / P. R. : Seorang ibu sedang membaca buku ilmiah populer, ada artikel yang menyebutkan bahwa sel pada manusia dapat membelah diri, juga artikel tersebut tertulis bahwa chromosome pria dan wanita berbeda, selanjutnya artikel itu menyebutkan bahwa tempat produksi energi terjadi didalam sel. Si ibu tersebut kesulitan memahami isi buku tersebut, kemudian bertanya pada anaknya, yang kebetulan kuliah di Universitas Airlangga.

88 Pertanyaannya : Bagaimana cara suatu sel dapat membelah diri ?
Chromosome itu apa ? Dimana tempatnya, tersusun oleh apa, berapa jumlahnya, apakah berbeda antara pria dan wanita ? Apa yang dimaksud produksi energi didalam sel ?

89 Seorang anak wanita umur 12 tahun – siswa SD Kelas 6 akan menghadapi Ujian Nasional, belajar mengenai Biologi. Si anak bertanya pada ibunya, orang yang sedang berjalan dan berlari apakah membutuhkan sumber energi, darimana sumber energi tersebut. Kalau dari makanan bagaimana makanan tersebut bisa memberi energi tubuh orang yang sedang berjalan dan berlari tersebut. Ibunya kesulitan untuk menjawab dan menjelaskan, kemudian bertanya pada kakak anak tersebut yang sedang Kuliah di UNAIR

90 Pertanyaannya : Organ apa yang aktif sehingga seseorang dapat berjalan dan berlari. Bagaimana mekanismenya sehingga makanan dapat digunakan sebagai sumber energi sehingga dapat sampai ke sel-sel organ tersebut. Apakah glukosa dapat digunakan sebagai sumber energi ? Kalau bisa bagaimana caranya masuk kedalam sel ?

91 Sugar Crystals This electron microscope
image of raw cane sugar reveals the shape of sugar crystals.

92 Sugar = sucrose Glucose – fructose

93 To Be Continued

94 NEXT EPISODE

95 Action potential +30 mV repolarization - 0 mV depolarization
Overshoot repolarization Firing level depolarization Action potential

96 Local anesthesia potensial aksi / impuls Block impuls dengan cara :
Block konduksi potensial aksi / impuls Block impuls dengan cara : - menghambat pembukaan saluran ion Natrium ( Na channel penting untuk konduksi potensial aksi )

97


Download ppt "Physiology Dep. Airlangga University"

Presentasi serupa


Iklan oleh Google