Upload presentasi
Presentasi sedang didownload. Silahkan tunggu
Diterbitkan olehNear Irfansyah Telah diubah "10 tahun yang lalu
1
Kasus 2 Sampel Independen: UJI MEDIAN dan UJI FISHER
Kelompok 2: Agustin Darmayanti Joanico J. Freitas Nurine Kristy Nurul Ardhiani Kelas 2A Sekolah Tinggi Ilmu Statistik
2
UJI eksak fisher
3
Uji Eksak Fisher Untuk dua kelompok sampel independen berukuran kecil
Digunakan bila setiap anggota dari dua kelompok sampel dapat digolongkan dalam dua kelas yang saling asing satu sama lain Uji Eksak Fisher Berfungsi untuk menganalisis data (nominal maupun ordinal) terpisah Tes ini menentukan apakah kedua kelompok terkait berbeda dalam proporsi elemen yang masuk dalam dua klasifikasi yang ada
4
A B C D A+B C+D A+C B+D N Tabel Kontingensi: - + Jumlah Grup I Grup II
Mewakili sembarang klasifikasi, contohnya di atas dan di bawah median, lulus dan gagal, setuju dan tidak setuju, dan sebagainya. - + Jumlah A B A+B C D C+D A+C B+D N Grup I Grup II Jumlah Mewakili dua kelompok sampel independen, contohnya kelompok eksperimen dan kelompok kontrol, laki-laki dan perempuan, bekerja dan menganggur, dan sebagainya.
5
Nilai p bisa dihasilkan dengan dua cara, pertama adalah melalui penghitungan dengan rumus:
Atau bisa dihasilkan dengan melihat tabel I pada lampiran di buku Statistik Nonparametrik Sidney Siegel. Tabel hanya bisa digunakan untuk nilai A+B dan C+D lebih kecil atau sama dengan 15. Jika harga p yang dihasilkan lebih kecil atau kurang dari α, maka diputuskan untuk menolak Ho
6
Contoh 1 Jika dalam suatu observasi dihasilkan data seperti tercantum dalam tabel berikut: Jumlah + - 10 4 5 9 14 19 Grup I Grup II Jumlah Maka kita hanya perlu melakukan substitusi nilai A, B, C, dan D ke dalam rumus p atau melihat nilai p dalam tabel I
7
Bila diketahui α = 0,05, maka dapat diputuskan untuk
menolak Ho karena nilai p lebih kecil daripada α.
8
Penggunaan rumus: Contoh 1 sangat sederhana perhitungannya karena salah satu sel bernilai nol (kiri bawah). Tapi jika tidak ada sel yang bernilai nol, harus diingat bahwa penyimpangan yang lebih ekstrim dari distribusi yang diasumsikan di bawah Ho dapat terjadi dengan total marjinal yang sama, dan harus dipertimbangkan penyimpangan-penyimpangan yang lebih ekstrim yang mungkin terjadi.
9
Contoh 2 Jika dalam suatu observasi dihasilkan data seperti tercantum dalam tabel berikut: Jumlah + - Grup I 3 6 9 4 2 7 8 15 Grup II Jumlah Maka kita hanya perlu melakukan substitusi nilai A, B, C, dan D ke dalam rumus p atau melihat nilai p dalam tabel I. Namun karena nilai sel terkecil bukan nol, melainkan 2, maka prosedur berikut harus dilakukan.
10
Buat tabel kontingensi dengan jumlah marginal yang sama, namun dengan kondisi yang lebih ekstrem, seperti di bawah: + - Jumlah Grup I 2 7 9 5 1 6 8 15 Grup II Jumlah Dan: + - Jumlah 1 8 9 6 7 15 Grup I Grup II Jumlah
11
Lalu substitusi nilai A, B, C, dan D ke dalam rumus p
Lalu substitusi nilai A, B, C, dan D ke dalam rumus p. Penghitungan dilakukan untuk masing-masing tabel. Jumlahkan ketiga nilai p dan bandingkan dengan nilai α, jika diketahui α =0,05.
12
p = 0, , , = 0,2308 Karena nilai p lebih besar dari nilai α, maka diputuskan untuk menerima Ho Begitu pula bila nilai sel terkecil adalah 3, maka perlu dilakukan 4 kali penghitungan p dengan 4 kemungkinan baru kemudian dijumlahkan.
13
Contoh 3 Seorang peneliti ingin meneliti mengenai proporsi jenis pekerjaan penduduk di bidang pertanian dan non pertanian di suatu wilayah kecil. Penduduk dibedakan berdasarkan tempat tinggal mereka, yaitu desa dan kota. Hipotesisnya ialah bahwa penduduk dengan pekerjaan di bidang non pertanian di desa lebih besar daripada penduduk dengan pekerjaan pertanian di kota.
14
Contoh 3 (Lanjutan) Setelah dikelompokkan, datanya adalah sbb: Jumlah Pertanian Non pertanian Desa 7 1 8 2 16 18 9 17 26 Kota Jumlah Apakah pernyataan peneliti tersebut benar? (α=5%)
15
Jawaban Ho : Proporsi penduduk dengan pekerjaan pertanian dan proporsi penduduk dengan pekerjaan non pertanian di desa dan kota adalah sama. H1 : Proporsi penduduk dengan pekerjaan di bidang non pertanian di desa lebih besar daripada penduduk dengan pekerjaan pertanian di kota. α : 0,05 Wilayah kritik : p-value ≤ α
16
Terdapat 2 tabel kontingensi karena nilai terkecil pada sel adalah 1.
Pertanian Non pertanian Jumlah Desa 7 1 8 2 16 18 9 17 26 Kota Jumlah Jumlah Pertanian Non pertanian Desa 8 1 17 18 9 26 Kota Jumlah
17
Maka: Keputusan : Tolak Ho, karena p-value ≤ α
Kesimpulan : Proporsi penduduk dengan pekerjaan di bidang non pertanian di desa lebih besar daripada penduduk dengan pekerjaan pertanian di kota. P-value = 0, , =0,
18
UJI MEDIAN
19
A. FUNGSI Untuk menguji signifikansi hipotesis komparatif dua sampel bebas bila datanya berbentuk nominal atau ordinal (besar sampel antara Fisher dan Chi-kuadrat). Untuk menguji apakah 2 sampel dari 2 populasi independen memiliki median yang berbeda.
20
Bentuk Isian Data Kelompok Jumlah Kelompok I Kelompok II
Banyak skor di atas median gabungan A B A+B Banyak skor di bawah median gabungan C D C+D m n N = m+n
21
B. PROSEDUR UJI Tentukan median gabungan dari skor m+n.
Kita bagi dua kedua himpunan skor tersebut, apakah berada di bawah atau di atas median gabungan, masukkan dalam tabel 2x2 Tentukan Hipotesis, dimana : Ho : Populasi dua kelompok mempunyai median yang sama H1 : Populasi dua kelompok tidak mempunyai median yang sama
22
B. PROSEDUR UJI (lanjutan)
Tentukan tingkat signifikansi (α) dan nilai χ2tabel dari tabel-C Untuk Uji Khi-kuadrat: Tolak Ho jika χ2hitung > χ2tabel Gagal Tolak Ho jika χ2hitung ≤ χ2tabel Untuk Uji Fisher: Jika probabilitas (p) yang diperoleh dari penggunaan tes ini sama dengan atau kurang dari α, tolak Ho
23
C. RUMUS UJI Uji Fisher Uji Chi-Kuadrat
24
D. ATURAN Jika m+n > 40, gunakan tes χ2 dengan koreksi Yate’s (koreksi kontinyuitas) Jika 20 < m+n < 40, tes χ2 bisa digunakan bila frekuensi harapan minimal 5. Bila ada frekuensi harapan < 5 makan gunakan tes Fisher. Jika m+n < 20, gunakanlah tes fisher.
25
D. ATURAN (lanjutan) Jika ada skor yang jatuh tepat pada median gabungan : 1. Jika m+n besar dan sedikit yang jatuh tepat pada median gabungan, kasus tersebut digugurkan dari analisis. 2. Skor tersebut dimasukkan ke dalam kategori ≤ Median
26
Contoh Soal Data kadar Na+ (dalam mg) yang ada pada darah penderita hipertensi dan orang sehat. Sehat : Hipertensi : Apakah median dua kelompok tersebut sama? 10,2 2,2 0,0 2,6 43,1 45,8 63,6 1,8 3,7 92,8 54,8 51,6 61,7 250,8 84,5 34,7 62,2 11,0 39,1
27
Jawaban N = 22 dengan median gabungan (Me) = 54,7 Dibuat tabel 2x2
Kelompok Jumlah Sehat Hipertensi Banyak skor di atas median gabungan 1 6 7 Banyak skor di bawah median gabungan 11 4 15 12 10 N = 22
28
Jawaban Ho : Median dua kelompok tersebut sama. H1 : Median dua kelompok tersebut tidak sama. Digunakan tingkat sig. α = 5% Dengan menggunakan uji Fisher : Keputusan : Tolak Ho, karena p < 0,05 Kesimpulan : Median dua kelompok tersebut (sehat dan hipertensi) tidak sama.
29
;KL Kelompok 2 Uji median dan uji eksak fisher
Presentasi serupa
© 2024 SlidePlayer.info Inc.
All rights reserved.