Upload presentasi
Presentasi sedang didownload. Silahkan tunggu
1
UKURAN DISPERSI (PENYEBARAN DATA)
2
PENGANTAR Ukuran Penyebaran
Suatu ukuran baik parameter atau statistik untuk mengetahui seberapa besar penyimpangan data dengan nilai rata-rata hitungnya. Ukuran penyebaran membantu mengetahui sejauh mana suatu nilai menyebar dari nilai tengahnya, semakin kecil semakin besar.
3
PENGGUNAAN UKURAN PENYEBARAN
Rata-rata bunga bank 11,43% per tahun, namun kisaran bunga antar bank dari 7,5% - 12,75% Rata-rata inflasi Indonesia sebesar 18,2% dengan kisaran antara 6% - 78% Harga rata-rata saham Rp 470 per lembar, namun kisaran saham sangat besar dari Rp 50 - Rp per lembar
4
Penyebaran nilai data-data numerik dari nilai rata-rata dinamakan dengan variasi atau penyebaran data. Salah satu cara untuk melakukan pengukuran variasi atau penyebaran data adalah standar deviasi.
5
Standar Deviasi Pangkat dua dari standar deviasi dinamakan Varians.
Untuk sampel , simpangan baku diberi simbol s Untuk populasi, simpangan baku diberi simbol σ
6
Lebih efektif digunakan
VARIANS VARIANS Untuk tingkat ketelitian lebih tinggi digunakan Lebih efektif digunakan
7
Apabila data dari sampel telah disusun dalam daftar distribusi frekuensi, maka untuk menentukan varians dipakai rumus : n = banyak data fi = frekuensi xi = nilai tengah kelas
8
contoh Data produksi suatu pabrik selama 80 bulan setelah dibentuk dalam tabel distribusi frekuensi adalah sebagai berikut : Jumlah Produksi (dalam ton) Frekuensi (dalam bulan) 31 – 40 1 41 – 50 2 51 – 60 5 61 – 70 15 71 – 80 25 81 – 90 20 91 – 100 12 Jumlah 80 Pertanyaan : tentukanlah standar deviasi data tersebut !!
9
solusi Rumus varians untuk data berkelompok atau setelah disusun dalam distribusi frekuensi adalah Dan standar deviasi adalah akar kuadrat dari varians, maka data yang diperoleh disusun menjadi:
10
Nilai tengah pangkat dua
Jumlah Produksi (dalam ton) fi xi xi2 fixi fixi2 31 – 40 1 35,5 1260,25 41 – 50 2 45,5 2070,25 91,0 4140,50 51 – 60 5 55,5 3080,25 277,5 15401,25 61 – 70 15 65,5 4290,25 982,5 64353,75 71 – 80 25 75,5 5700,25 1887,5 142506,25 81 – 90 20 85,5 7310,25 1710,0 146205,00 91 – 100 12 95,5 9120,25 1146,0 109443,00 Jumlah 80 -- 6130,0 483310,00 Nilai Tengah Kelas Nilai Tengah pangkat 2 Frekuensi data Frekuensi x Nilai tengah Frekuensi x Nilai tengah pangkat dua Jumlah fi.xi2 Jumlah fi.xi Banyak Data
11
… Selanjutnya :
12
varians Standar deviasi
13
TUGAS Dilakukan pengukuran suhu (dalam derajat Celcius) 40 jenis pipa yang mengalirkan gas pada pengeboran lepas pantai dengan data sebagai berikut : Buatlah tabel distribusi frekuensi data tersebut ! Hitunglah standar deviasi dari data tersebut !
Presentasi serupa
© 2024 SlidePlayer.info Inc.
All rights reserved.