Upload presentasi
Presentasi sedang didownload. Silahkan tunggu
Diterbitkan olehZen Nurdiansyah Telah diubah "10 tahun yang lalu
1
Model Transportasi Pemrograman Linier Semester Ganjil 2012/2013 Dr. Rahma Fitriani, S.Si., M.Sc,
2
Transportation Simplex Method Memanfaatkan notasi matriks untuk koefisien baris nol Tableau yang digunakan adalah tableau dua arah seperti pada pertemuan sebelumnya Walaupun ada m+n kendala, hanya m+n-1 yang bebas Tercermin dari struktur berikut: m-1 kendala supplyn kendala demand
3
Dengan struktur tersebut, koefisien baris nol (fs obyektif) dari masalah transportasi untuk BV tertentu akan bersifat istimewa: Untuk seluruh x ij BV dan
4
Koefisien baris nol untuk keseluruhan x ij mempunyai bentuk:
5
Langkah-langkah metode simpleks untuk Transportation Problem Langkah 1: Jika TP tidak balanced, dibuat agar balanced Langkah 2: Gunakan salah satu metode (Northwest Corner/Min Cost/Vogel) untuk menentukan BFS yang pertama (initial solution) Langkah 3: manfaatkan sifat Untuk seluruh BV dan Untuk menentukan seluruh u dan v dari BFS yang ada Langkah 4: Hitung koefisien baris nol pada seluruh sel. Perhatikan kriteria optimalitas pada koefisien baris nol (kasus min),
6
Langkah 4 (lanjut): Jika ada sel dengan koefisien baris nol yang dapat menurunkan z (bernilai +) pilih yang paling banyak menurunkan nilai z pilih x ij sebagai BV yang baru, dengan memanfaatkan sifat looping (lebih detil pada contoh) pada tableu Langkah 5: dapatkan BFS yang baru, kembali ke langkah 3 dan 4
7
Permasalah Powerco dengan solusi awal menggunakan metode Northwest Corner (Langkah 2) v 1 v2 v3 v4 Supply u1 8 6 10 9 35 u2 9 12 13 7 10 20 50 u3 14 9 16 5 10 30 40 Demand452030
8
Tabel koefisien baris nol (Langkah 3) Sementara abaikan nilai x ij Pertahankan posisi sel letak BV (grey highlighted) Cari solusi untuk seluruh u dan v secara bertahap untuk setiap BV v 1v2v3v4 U1 86109 U2 912137 U3 149165 U10 v 18 – 0=8 U29 – 8 =1 v 212 – 1=11 U316 – 12 =4 v 313 – 1=12v45 –4=1
9
Perhitungan koefisien baris nol untuk seluruh sel (Langkah 4) v 1 8 v2 11 v3 12 v4 1 u1 086109 u2 1912137 u3 4149165 0+8- 8=0 0+11- 6=5 dst untuk semua sel 0+12- 10=2 0+1-9= -8 1+8-9= 0 1+11- 12=0 1+12- 13=0 1+1-7= -5 4+8-14= -2 4+11-9= 6 4+12- 16=0 4+1-5= 0 Perhatikan semua BV mempunyai koefisien = 0
10
v 1 8 v2 11 v3 12 v4 1 u1 0 0 8 5 6 2 10 -8 9 u2 1 0 9 0 12 0 13 -5 7 u3 4 -2 14 6 9 0 16 0 5 Belum optimal, karena belum semua (-) X ij yang dapat digunakan sebagai BV berikutnya ada pada sel yang dapat menurunkan z paling banyak Koefisien baris nol paling positif (X 32 )
11
Kembali ke tableau yang memuat X ij (Langkah 4 lanjut) Penentuan BV mana yang keluar menggantikan X 32 menggunakan sistem looping untuk mempertahankan terpenuhinya supply dan demand v 1 v2 v3 v4 Supply u1 8 6 10 9 35 u2 9 12 13 7 10 20 50 u3 14 9 16 5 10 30 40 Demand452030
12
Kembali ke tableau yang memuat X ij (Langkah 4 lanjut) Looping diawali dari X 32 melewati sel-sel BV yang ada sebagai titik- titik pojok dan kembali ke X 32 searah jarum jam v 1 v2 v3 v4 Supply u1 8 6 10 9 35 u2 9 12 13 7 10 20 50 u3 14 9 16 5 10 30 40 Demand452030
13
Kembali ke tableau yang memuat X ij (Langkah 4 lanjut) Sel sebagai titik-titik pojok loop: dinyatakan sebagai sel ganjil dan genap Sel X 32 adalah awal diberi nomor 0 Sel X 22 adalah diberi nomor 1 Sel X 23 adalah diberi nomor 2 Sel X 33 adalah diberi nomor 3 v 1 v2 v3 v4 Supply u1 8 6 10 9 35 u2 9 12 13 7 10 20 50 u3 14 9 16 5 10 30 40 Demand452030
14
Kembali ke tableau yang memuat X ij (Langkah 4 lanjut) Alokasi perubahan adalah pada sel ganjil (yellow highlighted) min(X 22, X 33 )=min(20,10)=10 Setiap sel genap (pink highlighted) tambah dengan 10 Setiap sel ganjil (yellow highlighted) kurangi dengan 10 v 1 v2 v3 v4 Supply u1 8 6 10 9 35 u2 9 12 13 7 10 20 50 u3 14 9 16 5 10 30 40 Demand452030 10 30 10
15
Langkah 5: Tableau dengan BFS yang baru v 1 v2 12 v3 v4 Supply u1 8 6 10 9 35 u2 9 12 13 7 10 30 50 u3 14 9 16 5 10 30 40 Demand452030 Kembali ke langkah 3 untuk menghitung seluruh u dan v bagi koefisien baris nol. Menentukan apakah sudah diperoleh solusi optimal berdasarkan kriteria optimalitas dari koefisien baris nol
16
Sementara abaikan nilai x ij Pertahankan posisi sel letak BV (grey highlighted) Cari solusi untuk seluruh u dan v secara bertahap untuk setiap BV Tabel koefisien baris nol (Langkah 3) v 1v2V3V4 u1 86109 u2 912137 u3 149165 0 8 – 0 =8 9 – 8 =1 12 – 1 =1113 – 1 =12 9 – 11 = - 2 5 + 2 =7
17
Perhitungan koefisien baris nol untuk seluruh sel (Langkah 4) v 1 8 v2 11 V3 12 V4 7 u1 086109 u2 1912137 u3 -2149165 dst untuk semua sel 0+8-8=0 1+8-9=0 1+11-12=0 1+12-13=0 0+11-6=50+12-10=20+7-9=-2 1+7-7=1 -1+8-14=-7-2+11-9=0-2+12-16=-6 -2+7-5=0 Perhatikan semua BV mempunyai koefisien = 0
18
v 1 8 v2 11 v3 12 v4 7 u1 0 0 8 5 6 2 10 -2 9 u2 1 0 9 0 12 0 13 1 7 u3 -2 -8 14 0 9 -6 16 0 5 Belum optimal, karena belum semua (-) X ij yang dapat digunakan sebagai BV berikutnya ada pada sel yang dapat menurunkan z paling banyak Koefisien baris nol paling positif (X 12 )
19
Kembali ke tableau yang memuat X ij (Langkah 4 lanjut) v 1 v2 12 v3 v4 Supply u1 8 6 10 9 35 u2 9 12 13 7 10 30 50 u3 14 9 16 5 10 30 40 Demand452030 Penentuan BV mana yang keluar menggantikan X 12 menggunakan sistem looping untuk mempertahankan terpenuhinya supply dan demand
20
Kembali ke tableau yang memuat X ij (Langkah 4 lanjut) v 1 v2 12 v3 v4 Supply u1 8 6 10 9 35 u2 9 12 13 7 10 30 50 u3 14 9 16 5 10 30 40 Demand452030 Looping diawali dari X 12 melewati sel-sel BV yang ada sebagai titik- titik pojok dan kembali ke X 12 searah jarum jam
21
Kembali ke tableau yang memuat X ij (Langkah 4 lanjut) v 1 v2 12 v3 v4 Supply u1 8 6 10 9 35 u2 9 12 13 7 10 30 50 u3 14 9 16 5 10 30 40 Demand452030 Sel sebagai titik-titik pojok loop: dinyatakan sebagai sel ganjil dan genap Sel X 12 adalah awal diberi nomor 0 Sel X 22 adalah diberi nomor 1 Sel X 21 adalah diberi nomor 2 Sel X 11 adalah diberi nomor 3
22
Kembali ke tableau yang memuat X ij (Langkah 4 lanjut) v 1 v2 12 v3 v4 Supply u1 8 6 10 9 35 u2 9 12 13 7 10 30 50 u3 14 9 16 5 10 30 40 Demand452030 Alokasi perubahan adalah pada sel ganjil (yellow highlighted) min(X 22, X 11 )=min(10,35)=10 Setiap sel genap (pink highlighted) tambah dengan 10 Setiap sel ganjil (yellow highlighted) kurangi dengan 10 10 020 25
23
Langkah 5: Tableau dengan BFS yang baru v 1 v2 12 v3 v4 Supply u1 8 6 10 9 25 10 35 u2 9 12 13 7 20 30 50 u3 14 9 16 5 10 30 40 Demand452030 Kembali ke langkah 3 untuk menghitung seluruh u dan v bagi koefisien baris nol. Menentukan apakah sudah diperoleh solusi optimal berdasarkan kriteria optimalitas dari koefisien baris nol
24
Lakukan perhitungan koefisien baris nol sekali lagi Cari loop sekali lagi Diperoleh tableau berikut yang sudah optimal
25
Tableau Optimal v 1 v2 v3 v4 Supply u1 8 6 10 9 25 35 u2 9 12 13 7 45 5 50 u3 14 9 16 5 10 30 40 Demand452030 Tabel koefisien baris nol v 16v26v310v42 u10-2806010-79 u2309-312013-27 u33-51409-31605 Tidak ada lagi yang >0, sudah optimal
26
Tableau Optimal v 1 v2 v3 v4 Supply u1 8 6 10 9 25 35 u2 9 12 13 7 45 5 50 u3 14 9 16 5 10 30 40 Demand452030 Nilai Z: biaya minimum
Presentasi serupa
© 2024 SlidePlayer.info Inc.
All rights reserved.