Upload presentasi
Presentasi sedang didownload. Silahkan tunggu
1
BAB II HIMPUNAN
2
2.1 Definisi Himpunan Definisi 2.1
Himpunan didefinisikan sebagai kumpulan objek-objek yang berbeda yang tercakup dalam satu kesatuan. Atau himpunan objek dengan syarat keanggotaan tertentu. Untuk menyatakan suatu himpunan, digunakan huruf besar/KAPITAL seperti A, B, C, dsb. Sedangkan untuk menyatakan anggota-anggotanya digunakan huruf kecil seperti a, b, c, dsb. Misalkan, S = {1,2,3,4,5} ® S = {x 1 £ x £ 5 , x Î N} Jika suatu objek x merupakan anggota dari himpunan S, maka dituliskan x Î S dan dibaca : “x adalah anggota S”, atau “ x ada dalam S”, atau “x adalah elemen S”. Sebaliknya jika x bukan anggota S, dituliskan x Ï S . Himpunan yang tidak mempunyai anggota, disebut himpunan kosong (empty set) dan dilambangkan dengan : Q = {} à himpunan kosong ( Ø ) Beberapa sifat himpunan kosong adalah sebagai berikut : Himpunan kosong adalah himpunan bagian semua himpunan. Jadi Ø Í A untuk semua himpunan A. Himpunan kosong adalah tunggal.
3
2.2 Penyajian Himpunan Ada tiga cara untuk menyatakan himpunan :
List/mendaftar (enumerasi), yaitu menuliskan tiap-tiap anggota himpunan di antara 2 kurung kurawal. Misalkan A adalah nama-nama pasaran jawa, yaitu: pon, wage, kliwon, legi, pahing. Maka A ditulis sebagai A = {pon, wage, kliwon, legi, pahing} Dengan syarat keanggotaan, yaitu menuliskan sifat-sifat yang ada pada semua anggota himpunan di antar 2 kurung kurawal. Misalkan A adalah himpunan yang menyatakan nama-nama pasaran jawa, maka dituliskan sebagai A = {x | x nama-nama pasaran jawa}
4
2.2 Penyajian Himpunan Diagram Venn Himpunan dinyatakan secara grafis
Pada diagram Venn himpunan semesta (U) sebagai suatu segi empat sedangkan himpunan lainnya digambarkan sebagai lingkaran dalam segiempat tersebut. Kadang-kadang suatu himpunan hanya dapat dinyatakan dengan salah satu cara, tetapi kadang-kadang juga dapat dinyatakan dengan ketiganya.
5
Simbol-simbol Baku Sejumlah simbol baku yang berbentuk huruf tebal: P = himpunan bilangan bulat positif N = himpunan bilangan asli Z = himpunan bilangan bulat Q = himpunan bilangan rasional R = himpunan bilangan riil C = himpunan bilangan kompleks
6
Kardinalitas Definisi 2.2. Sebuah himpunan dikatakan berhingga (finite set) jika terdapat n elemen berbeda (distinct) yang dalam hal ini n adalah bilangan bulat tak-negatif. Sebaliknya himpunan tersebut dinamakn tak-berhingga (infinite set). Misalkan A merupakan himpunan berhingga, maka jumlah elemen berbeda di dalam A disebut kardinal dari himpunan A. Notasi: atau
7
Contoh Kardinalitas
8
2.3. Jenis-jenis Himpunan Himpunan Kosong Definisi 2.2.
Himpunan yang tidak memiliki satupun elemen atau himpunan dengan kardinal = 0 disebut himpunan kosong (empty set). Notasi : Contoh:
9
2.3. Jenis-jenis Himpunan Himpunan Bagian (Subset) Himpunan bagian à Í
Definisi 2.3. Himpunan A dikatakan himpunan bagian (subset) dari himpunan B jika dan hanya jika setiap elemen A merupakan elemen dari B . Dalam hal ini B dikatakan superset dari A. A Í B jika dan hanya jika "x Î A, x Î B. Jika A adalah himpunan bagian B, dikatakan juga bahwa B memuat A (simbol B Ê A ). Himpunan bagian sejati à Ì P disebut himpunan bagian sejati (proper subset) dari Q jika P tidak sama dengan Q, artinya setidaknya ada satu unsur di dalam Q yang tidak ada di dalam P. Misalkan, P = {a, b} merupakan himpunan bagian sejati dari himpunan Q = {y, x, b, c, a}. Untuk menyatakan P adalah himpunan bagian sejati Q, dapat dituliskan P Ì Q . Perbedaan antara Î (simbol keanggotaan himpunan) dan Í (simbol himpunan bagian). x Î A berarti bahwa elemen x adalah salah satu diantara elemen-elemen A sedangkan A Í B berarti bahwa setiap anggota A merupakan anggota B.
10
Contoh Himpunan Bagian
11
2.3. Jenis-jenis Himpunan TEOREMA 2.1.
Untuk sembarang himpunan A berlaku hal-hali berikut.
12
2.3. Jenis-jenis Himpunan Himpunan yang Sama Definisi 2.4.
Himpunan A dikatakan sama dengan himpunan B jika dan hanya jika keduanya mempunyai elemen yang sama. Dengan kata lain, A sama dengan B jika A adalah himpunan bagian dari B dan B adalah himpunan bagian dari A. Jika tidak demikian, maka dikatakan A tidak sama dengan B. Notasi: Contoh:
13
2.3. Jenis-jenis Himpunan Aksioma Himpunan yang Sama.
Untuk tiga buah himpunan A, B, C berlaku: A = A, B = B, dan C = C Jika A = B, maka B = A Jika A = B dan B = C, maka A = C
14
2.3. Jenis-jenis Himpunan Himpunan yang Ekivalen Definisi 2.5.
Himpunan A dikatakan ekivalen dengan himpunan B jika dan hanya jika kardinal dari kedua himpunan tersebut sama. Notasi: Contoh:
15
2.3. Jenis-jenis Himpunan Himpunan Saling Lepas Definisi 2.6.
Dua himpunan A dan B dikatakan saling lepas jika keduanya tidak memiliki elemen yang sama. Notasi: Contoh:
16
2.3. Jenis-jenis Himpunan Himpunan Kuasa Definisi 2.7.
Himpunan kuasa (power set) dari himpunan A adalah suatu himpunan yang elemennya merupakan semua himpunan bagian dari A, termasuk himpunan kosong dan himpunan A sendiri. Notasi: Contoh:
17
2.4. Operasi Himpunan Irisan / Intersection Definisi 2.8
Irisan dari himpunan A dan B (ditulis A Ç B ) adalah sebuah himpunan yang semua elemennya merupakan elemen dari himpunan A dan himpunan B. Notasi: A Ç B = {x | x Î A dan x Î B} . Daerah yang diarsir menunjukkan himpunan A Ç B . Contoh (i) Jika A = {2, 4, 6, 8, 10} dan B = {4, 10, 14, 18}, maka A Ç B = {4, 10} (ii) Jika A = { 3, 5, 9 } dan B = { -2, 6 }, maka A Ç B = Æ. jika A Ç B = {} , maka A dan B adalah himpunan saling lepas (disjoint) atau saling asing, yakni keduanya tidak memiliki elemen yang sama. Dinotasikan dengan: A // B
18
2.4. Operasi Himpunan Gabungan/Union Definisi 2.9
Gabungan dari himpunan A dan B (ditulis A È B) adalah sebuah himpunan yang semua elemennya merupakan elemen dari himpunan A atau himpunan B. Notasi: A È B = {x | x Î A atau x Î B} . Daerah yang diarsir merupakan himpunan A È B Contoh (i) Jika A = { 2, 5, 8 } dan B = { 7, 5, 22 }, maka A È B = { 2, 5, 7, 8, 22 } (ii) A È Æ = A
19
2.4. Operasi Himpunan Komplemen/Complement Definisi 2.10
Komplemen dari suatu himpunan A terhadap suatu himpunan semesta U adalah suatu himpunan yang elemennya merupakan elemn U yang bukan elemen himpunan A. Notasi: Daerah yang diarsir merupakan himpunan Contoh
20
2.4. Operasi Himpunan Selisih/difference Definisi 2.11
Selisih dari dua himpunan A dan B adalah suatu himpunan yang elemennya merupakan elemen dari A tetapi bukan elemen dari B. Selisih antara A dan B dapat juga dikatakan sebagai komplemen himpunan B relatif terhadap himpunan A. Notasi: Daerah yang diarsir merupakan himpunan Contoh
21
2.4. Operasi Himpunan Selisih Simetris/ Symmetric difference
Definisi 2.12 Selisih simetris dari himpunan A dan B adalah suatu himpunan yang elemennya ada pada himpunan A atau B, tetapi tidak pada keduanya. Notasi: Daerah yang diarsir merupakan himpunan Contoh
22
2.4. Operasi Himpunan Selisih Simetris/ Symmetric difference
23
2.4. Operasi Himpunan Perkalian Kartesian/ Cartesian Product
Definisi 2.13 Perkalian kartesian dari himpunan A dan B adalah himpunan yang elemennya semua pasangan berurutan (ordered pairs) yang dibentuk dari komponen pertama dari himpunan A dan komponen kedua dari himpunan B. Notasi: Contoh
24
2.4. Operasi Himpunan Perkalian Kartesian/Cartesian Product Catatan:
25
2.4. Operasi Himpunan Perampatan Operasi Himpunan
Operasi himpunan dapat dilakukan terhadap 2 atau lebih himpunan. Dalam hal ini kita melakukan perampatan (generalization) operasi himpunan dengan menggunakan dasar perampatan yang ada pada operasi aritmatika biasa.
26
2.4. Operasi Himpunan Perampatan Operasi Himpunan
Notasi perampatan tersebut dapat mempermudah penulisan ekspresi yang panjang, misalnya: Menjadi:
27
2.4. Operasi Himpunan Perampatan Operasi Himpunan Contoh:
28
Latihan dan Tugas Latihan 1. Misalkan:
A = himpunan semua mobil buatan dalam negeri B = himpunan semua mobil impor C = himpunan semua mobil yang dibuat sebelum tahun 1990 D = himpunan semua mobil yang nilai jualnya kurang dari Rp 100 juta E = himpunan semua mobil milik mahasiswa universitas tertentu Tuliskan kalimat matematika berikut ke dalam notasi ekspresi himpunan “mobil mahasiswa di universitas ini produksi dalam negeri atau diimpor dari luar negeri” “semua mobil produksi dalam negeri yang dibuat sebelum tahun 1990 yang nilai jualnya kurang dari Rp 100 juta” “semua mobil impor buatan setelah tahun 1990 mempunyai nilai jual lebih dari Rp 100 juta”
29
A È B A – C A È ( B Ç C ) (A È B ) Ç ( A È C ) C – (B – A) A Å B A ´ B
2. Jika A = {1, 2, 4, 8, 16}, B = {2, 4, 6, 8, 10}, dan C = {1, 3, 7, 15} Tentukanlah: A Ç B A È B A – C A È ( B Ç C ) (A È B ) Ç ( A È C ) C – (B – A) A Å B A ´ B P( A) P(B) P( A Ç B) P( A È B)
Presentasi serupa
© 2024 SlidePlayer.info Inc.
All rights reserved.