Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

I Putu Gustave Suryantara Pariartha

Presentasi serupa


Presentasi berjudul: "I Putu Gustave Suryantara Pariartha"— Transcript presentasi:

1 I Putu Gustave Suryantara Pariartha
PERANCANGAN BENDUNG I Putu Gustave Suryantara Pariartha

2 Pengertian Bendung Bendung adalah suatu bangunan yang diletakkan melintang pada suatu daerah aliran (sungai) dengan tujuan untuk menaikkan elevasi muka air yang kemudian akan digunakan untuk mengaliri daerah yang lebih tinggi atau daerah yang sama tinggi. Bendung ini bukan untuk menampung air, tetapi untuk menaikkan elevasi muka air

3 JENIS BENDUNG Bendung tetap (permanent)
Yaitu bendung yang dibangun dengan perencanaan jangka waktu tertentu, misalnya 50 tahun, 100 tahun, dan sebagainya. Dengan pengeksploitasian yang teratur dimana air ditinggikan kemudian dilimpahkan lagi. Bendung sementara (tidak permanent) Yaitu bendung yang dibangun tanpa perencanaan jangka waktu tertentu atau tanpa perhitungan debit periode ulang tertentu seperti di atas.

4 DATA-DATA Data Peta Topografi. Hal ini perlu untuk penyelidikan situasi sungai yang disyaratkan sebagai wilayah bendung, serta pencarian catchment area sungai dan stasiun hujan disekitar lokasi sebagai data perencanaan. Data Hidrologi. Mendesain bendung memerlukan data hidrologi antara lain data debit sungai (tengah bulanan, bulanan, tahunan) dan data hujan yang ada. Data ini dimaksudkan untuk mendapatkan debit banjir terbesar untuk perencanaan bendung. Data Geologi. Penyelidikan ini meliputi beberapa hal, seperti : Macam tanah dasar serta tabel lapisannya untuk perencanaan pondasinya. Tanah dasar untuk menentukan panjang lantai muka bendung serta besarnya uplift pressure. Data Mekanika Tanah Penyelidikannya meliputi : Tegangan tanah yang diijinkan. Koefisien geser antara dasar bendung dengan tanah dasar. Angka permeability tanah di sekitar bendung. Tegangan geser tanah yang diijinkan.

5 FUNGSI BENDUNG SECARA UMUM
Pada musim kemarau debit sungai kecil, pintu pembilas ditutup rapat agar air dapat disadap semaksimal mungkin. Pada musim hujan, debit melebihi kebutuhan dan ambang bendung dapat berfungsi sebagai peluap/spillway.

6 SYARAT_SYARAT KONSTRUKSI BENDUNG
Bendung harus stabil dan mampu menahan tekanan air pada waktu banjir. Bendung harus diperhitungkan terhadap daya tekanan tanah ke bawah. Bendung dapat menahan bocoran / seepage karena aliran sungai dan aliran air meresap ke dalam tanah. Tinggi ambang bendung memenuhi tinggi muka air minimum untuk seluruh daerah irigasi. Peluap berbentuk sedemikian rupa agar air dapat membawa pasir, kerikil, batuan, serta yang lainnya tanpa merusak konstruksi bendung. Ambang bendung diperhitungkan sedemikian rupa terhadap banjir-banjir besar dengan perlengkapan konstruksi pintu pembilas. Biaya pembangunan dan pemeliharaan harus hemat dan ekonomis. Kerusakan-kerusakan tubuh bendung oleh banjir harus sekecil mungkin.

7 SYARAT LOKASI BENDUNG Profil sungai dengan topografi yang baik dan profil sungai serta kelandaian yang teratur. Sungai lurus atau belokan dengan jari-jari yang besar dengan arah pengaliran yang tetap untuk menghindari terjadinya penggerusan. Sungai dengan tanah dasar yang cukup kuat, kedap air, tanggul banjirnya sependek mungkin serta mudah duhubungkan ke saluran pembawa. Belokan-belokan harus dihindari dengan mencari lokasi dimcoumpure yang seideal mungkin. Pengalihan jalur sungai yang lurus dimana sungai baru dibangun melewati bendung yang dibangun.

8 TIPE MERCU BENDUNG Tipe Vlugter. Tipe ini diigunakan pada tanah dasar aluvial dengan kondisi sungai tidak membawa batuan-batuan besar. Tipe ini banyak dipakai di Indonesia. Tipe Schoklitser. Tipe ini merupakan modifikasi dari tipe Vlugter yang terlalu besar yang mengakibatkan gauan dan koperau yang sangat besar. Secara khusus tipe ini dipakai bila R ≥ 8 m dan ∆H ≥ 4,5 m. Tipe Ogee. Tipe ini digunakan pada tanah dasar yang lebih baik daripada aluvial, dengan sungai yang membawa banyak batu, agar tidak cepat tergerus maka dibuat koperau yang masuk ke dalam tanah. Tipe Bulat. Bendung dengan mercu bulat memiliki harga koefisien debit yang jauh lebih tinggi (44%) dibandingkan dengan koefisien bendung ambang lebar. Pada sungai ini akan banyak memberikan keuntungan karena bangunan ini akan mengurangi tinggi muka air hulu selama banjir.

9 BAGIAN-BAGIAN BENDUNG
Tubuh bendung. Yang dimaksud dengan tubuh bendung adalah bagian yang selalu atau boleh dilewati air baik dalam keadaan normal maupun banjir. Tubuh bendung harus aman terhadap: Tekanan air. Tekanan akibat perubahan debit yang mendadak. Tekanan sedimen di muka bendung. Akibat berat sendiri. Konstruksi tubuh bendung biasanya terbuat dari pasangan batu kali atau beton.

10 BAGIAN-BAGIAN BENDUNG
Bangunan penguras. Untuk mengurangi aliran air yang bergolak (turbulent) yang terjadi di dekat Intake maka perlu dibangun under sluice dan tubuh bendung dipisahkan oleh dinding pemisah. Puncak ambang dari under sluice dijaga agar lebih rendah daripada puncak ambang bendung sehingga akan membantu membawa debit pada musim kering yang kecil ke arah under sluice. Normalnya permukaan dasar saluran terdalam waktu musim kering. Puncak ambang dari bendung lebih tinggi dari permukaan puncak ambang under sluice ± 1,5 m. Dengan membuka pintu penguras akan menghanyutkan endapan lumpu yang terdapat di depan intake maupun under sluice.

11 BAGIAN-BAGIAN BENDUNG
Dinding pemisah. Terbuat daei susunan baru kaki atau beton yang dibangun di sebelah kanan sumbu bendung dan membatasi antara tubuh dengan under sluice. Fungsi utama dari dinding pemisah: Membagi antara bendung utama dan under sluice karena kedudukan under sluice lebih rendah dari tubuh bendung. Membantu mengurangi arus yang bergolak di dekat intake sehingga lumpur akan mengendap di under sluice dan air yang bebas dari lumpur kasuk ke intake.

12 BAGIAN-BAGIAN BENDUNG
Pintu pengambilan (Canal Head regulator). Fungsinya: Mengatur pemasukan air ke dalam saluran. Mengontrol masuknya lumpur ke dalam saluran. Menahan banjir sungai masuk ke saluran.

13

14 STABILITAS BENDUNG Dalam peninjauan stabilitas bendung, maka potongan-potongan yang di tinjau terutama adalah potongan-potongan I-I dan II-II karena potongan ini adalah yang terlemah Potongan terlemah pada Bendung

15 STABILITAS BENDUNG Gaya Berat
Sebuah bendung akan menderita tekanan gaya-gaya seperti gaya berat, gaya gempa, tekanan lumpur, gaya hidrostatis dan gaya uplift-pressure. a. Gaya berat. Gaya berat ini adalah berat dari kontruksi, berarah vertikal ke bawahyang garis kerjanya melewati titik barat kontruksi. Untuk memudahkan perhitungan, biasanya dibagi-bagi yang berbentuk segitiga - segitiga, segi empat atau trapesium.Karena peninjauannya adalah tiap lebar 1 meter, maka gaya yang di perhitungkan adalah luas bidang kali berat jenis kontruksi (untuk pasangan batu kali biasanya di ambil 1,80 ) Gaya berat tubuh bendung

16 STABILITAS BENDUNG Gaya Gempa Gaya gempa.
Untuk daerah-daerah yang banyak gunung berapinya seperti di Indonesia, maka gaya gempa harus di perhitungkan terhadap kontruksi. Gaya gempa sebesar, K = f . G Dimana : f = koefisien gempa. G = berat kontruksi. Gaya gempa ini berarah horizontal, kearah yang berbahaya (yang merugikan ), dengan garis kerja yang melewati titik berat kontruksi. Sudah tentu juga ada komponen vertikal, tetapi ini relatif tidak berbahaya di bandingkan dengan komponen yang horizontal. Harga f tergantung dari lokasi tempat kontruksi sesuai dengan peta zone gempa.

17 STABILITAS BENDUNG Tekanan Lumpur
Apabila bendung sudah ber-exploitasi, maka akan tertimbun endapan di depan bendung. Endapan ini di perhitungkan sebagian setinggi mercu. Tekanan lumpur Dimana : s = b.d. lumpur (biasanya di ambil 1,6)  = sudut geser alam dari silt (repose angle) untuk silt diambil  = 30o

18 Gaya hidrostatis kondisi air normal dan banjir
STABILITAS BENDUNG Gaya Hidrostatis Mercu tidak tenggelam Gaya hidrostatis kondisi air normal dan banjir . W1 = ½..a.h W2 = ½..h2 W3 = ½. .a (2h1 – h) W4 = ½..h (2h1 – h) W5= ½..b.h2 W6 = ½..h2

19 Tekanan pada tiap titik sudut
STABILITAS BENDUNG Uplift Pressure Tekanan pada tiap titik sudut Secara umum besarnya tekanan pada titik X adalah : Dimana : Ux = uplift – pressure titik X. Hx = tingginya titik X terhadap air di muka. X = panjangnya creep line sampai ke titik X ( ABCX ). L = jumlah panjang creep line ( ABCXDE ) H = beda tekanan.

20 STABILITAS BENDUNG Uplift Pressure Uplift pressure
Gaya uplift di bidang XD adalah : UXD = 1/2.b ( Ux + Ud ) dan bekerja pada titik berat trapesium. Untuk tanah dasar yang baik di sertai dengan drain yang baik pula maka uplift dapat di anggap bekerja 67% nya. Jadi bekerja uplift-pressure antara 67% sampai 100%.

21 STABILITAS BENDUNG Asumsi Stabilitas Potongan terlemah pada Bendung
Untuk menyederhanakan perhitungan tanpa mengurangi hakekat dari perhitungan itu sendiri, maka di adakan anggapan-anggapan sbb : a. Peninjauan potongan vertikal adalah pada potongan-potongan yang paling lemah ( dalam hal ini potongan 1-1 dan 2-2 ) b. Lapisan puddel tetap berfungsi. c. Titik guling pada peninjau vertikal di atas adalah titik A. d. Kontruksi bagian depan bendung akan penuh lumpur setinggi mercu bendung. e. Harus di perhitungkan sekurang-kurangnya pada dua keadaan muka air, yaitu muka air banjir dan muka air normal. f. Ditinjau pula potongan-potongan mendatar pada kedudukan : - Bagian di atas lantai muka, tiap 1 meter vertikal. - Bagian di bawah lantai muka, dua potongan pada tempat-tempat yang di anggap terlemah.

22 Syarat-syarat stabilitas
STABILITAS BENDUNG Syarat-syarat stabilitas Pada kontruksi dengan batu kali, maka tidak boleh terjadi tegangan tarik. Ini berarti bahwa resultante gaya-gaya yang bekerja pada tiap-tiap potongan harus masuk kern. Daerah kern

23 Syarat-syarat stabilitas
STABILITAS BENDUNG Syarat-syarat stabilitas Momen tahanan ( Mt ) harus lebih besar dari pada momen guling ( Mg ). Faktor keamanan untuk ini dapat di ambil antara 1,50 dan 2. Kontruksi tidak boleh menggeser. Faktor keamanan untuk ini dapat di ambil antara 1,2 dan 2,00 F = faktor keamanan. f = koef. Gesekan antara kontruksi dan dasarnya Tegangan tanah yang terjadi tidak boleh melebihi tegangan tanah yang di izinkan. ( g  g )

24 Syarat-syarat stabilitas
STABILITAS BENDUNG Syarat-syarat stabilitas Setiap titik pada seluruh kontruksi tidak boleh terangkat oleh gaya keatas (balance antara tekanan keatas dan tekanan kebawah)


Download ppt "I Putu Gustave Suryantara Pariartha"

Presentasi serupa


Iklan oleh Google