Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

BAB 12 PROBABILITAS.

Presentasi serupa


Presentasi berjudul: "BAB 12 PROBABILITAS."— Transcript presentasi:

1 BAB 12 PROBABILITAS

2 Pengertian Probabilitas
Kata Probabilitas sering dipertukarkan dengan istilah lain seperti peluang dan kemungkinan. Secara umum probabilitas merupakan peluang bahwa sesuatu akan terjadi.

3 Probabilitas dinyatakan dengan bilangan desimal atau pecahan
Contoh : 0,50 ; 0,25 ; 0,70 Nilai probabilitas berkisar antara 0 dan 1

4 Semakin dekat nilai probabilitas ke nilai 0, semakin kecil kemungkinan suatu kejadian akan terjadi
Sebaliknya semakin dekat nilai probabilitas ke nilai 1, semakin besar peluang suatu kejadian akan terjadi.

5 Pendekatan Perhitungan Probabilitas
Bersifat Obyektif Bersifat Subyektif Pendekatan Klasik Pendekatan Frekuensi Relatif

6 Pendekatan Klasik Didasarkan pada asumsi bahwa seluruh hasil dari suatu eksperimen mempunyai kemungkinan (peluang) yang sama

7 a. (12.1) b. (12.2)

8 S A A

9 Contoh 12.1 : Penyelesaian :
Kepala pabrik mengatakan bahwa dari 100 barang produksinya, ada 25 yang rusak. Kalau barang dibungkus rapi, kemudian seorang pembeli mengambil satu barang secara acak. Berapakah probabilitasnya bahwa barang tsb rusak? Penyelesaian : Dari soal, n = 100 dan x = 25. dengan demikian,

10 Contoh 12.2 : Penyelesaian :
Seorang Direktur Bank mengatakan bahwa dari 1000 nasabahnya terdapat 150 orang yang tidak puas dengan pelayanan Bank. Pada suatu hari kita bertemu dengan salah seorang nasabah. Berapa probabilitasnya bahwa nasabah tsb tidak puas? Penyelesaian : Dari soal, diketahui bahwa n = 1000 dan x = 150. jika A adalah nasabah yang tidak puas, maka:

11 Konsep Frekuensi Relatif
Pendekatan yang mutakhir ialah perhitungan yang didasarkan atas limit dari frekuensi relatif, besarnya nilai yang diambil oleh suatu variabel juga merupakan kejadian. (12.3) Probabilitas suatu kejadian merupakan limit dari frekuensi relatif kejadian tersebut.

12 X f fr X1 f1 X2 f2 Xk fk Jumlah

13 Contoh 12.3 : Penyelesaian :
Sebuah studi yang dilakukan terhadap 750 lulusan Sekolah Administrasi Bisnis dari suatu Universitas (dalam hal ini studi dapat dikatakan sebagai eksperimen). Studi ini menunjukkan bahwa 300 dari 750 lulusan tidak bekerja sesuai dengan bidang studi utama yang diambil di Universitas tsb. Misalnya, seorang mahasiswa akuntansi bekerja sebagai manajer pemasaran. Berapa probabilitas bahwa seorang lulusan administrasi bisnis akan bekerja di bidang yang bukan merupakan studi utamanya? Penyelesaian : Berdasarkan rumus di atas, maka dapat dihitung probabilitas terjadinya suatu kejadian :

14 Contoh 12.4 Pada suatu penelitian terhadap 65 karyawan yang bekerja di perusahaan swasta, salah satu karakteristik yang ditanyakan ialah besarnya gaji/upah bulanan, yang digambarkan sbb : Tabel 12.1 X 55 65 75 85 95 105 115 f 8 10 16 14 5 2 Apabila kita kebetulan bertemu dengan salah seorang karyawan tsb, berapakah besarnya probabilitas bahwa upahnya 65 ribu rupiah? 105 ribu rupiah?

15 Tabel 12.1 X 55 65 75 85 95 105 115 f 8 10 16 14 5 2 n = jumlah karyawan = 65

16 Contoh 12.5 Nilai Banyaknya mahasiswa (1) (2) < 25 10 25 – 50 30
Diketahui bahwa nilai ujian Statistik mahasiswa Universitas Tarumanegara (X) adalah sbb : Tabel 12.2 Nilai Banyaknya mahasiswa (1) (2) < 25 10 25 – 50 30 50 – 75 45 > 75 15 Jumlah 100 Kalau kita bertemu dengan salah seorang mahasiswa dari sekelompok mahasiswa tsb, berapakah probabilitasnya bahwa dia mendapat nilai 25 < X < 50 ; 50 < X < 75 dan X ≥ 75 ?

17

18 Contoh 12.6 Suatu eksperimen dilakukan dengan jalan melemparkan mata uang logam Rp 50 secara berulang-ulang. Mata uang tsb mempunyai dua sisi gambar, yaitu sisi yang satu berupa gambar burung (B) dan sisi sebelahnya bukan burung ( ) Jika: X1 = kejadian melihat B X2 = kejadian melihat n = banyaknya lemparan mata uang. Tabel 12.3 f fr X1 8 0,8 60 0,6 450 0,45 5.490 0,549 52.490 0,5249 X2 2 0,2 40 0,4 550 0,55 4.510 0,451 47.510 0,4751 n 10 1,0 100 1000 1,00 10.000 1,000 1,0000

19 Untuk n = 10 P(X1) = 0,8  log 10 = 1 Untuk n = 100 P(X1) = 0,6  log 100 = 2 Untuk n = P(X1) = 0,45  log = 3 Untuk n = P(X1) = 0,549  log = 4 Untuk n = P(X1) = 0,5249  log = 5

20 Probabilitas Subyektif
Probabilitas Subyektif didasarkan atas penilaian seseorang dalam menyatakan tingkat kepercayaan. Jika tidak ada pengamatan masa lalu sebagai dasar, maka pernyataan probabilitas tersebut bersifat subyektif.

21 Kejadian / peristiwa dan notasi Himpunan
Eksperimen melempar mata uang logam Rp 50 sebanyak 2 kali Hasil eksperimen salah satu dari 4 kemungkinan Hasil yang berbeda dari suatu eksperimen disebut titik sampel Himpunan dari seluruh kemungkinan hasil disebut ruang sampel

22 Tabel 12.4 Ruang sampel untuk eksperimen
Pelemparan 2 dadu 1 2 3 4 5 6 11 12 13 14 15 16 21 22 23 24 25 26 31 32 33 34 35 36 41 42 43 44 45 46 51 52 53 54 55 56 61 62 63 64 65 66 II I I = dadu pertama II = dadu kedua 23 = dadu pertama 2 dadu kedua 3

23

24 Ruang sampel suatu eksperimen mempunyai 2 syarat :
Dua hasil atau lebih tidak dapat terjadi secara bersamaan / saling meniadakan (mutually exclusive event) misalnya, melempar mata uang satu kali hasilnya atau tidak bisa 2. Harus terbagi habis (exhaustive). Artinya, ruang sampel harus memuat seluruh kemungkinan hasil, tidak ada yang terlewat. misalnya, jika melempar mata uang satu kali, maka ruang sampel (S) adalah

25

26 Mata uang logam Rp 50 dilempar sebanyak 3 kali
maka akan diperoleh ruang sampel 23 Kalau X = jumlah gambar burung ( B ) untuk 3 kali lemparan

27 X f fr 1 3 2

28 Tabel 12.6 Tabel 12.5 X fr 1 2 3 X f fr 1 3 2

29 Kalau kita melempar dadu sebanyak 2 kali (dapat juga 2 dadu
dilempar sekali) dan kalau X adalah jumlah mata dadu tersebut, maka : X = 2 terjadi 1 kali (11 = 1 dan 1) X = 3 terjadi 2 kali (21, 12) X = 4 terjadi 3 kali (31, 22, 13) X = 5 terjadi 4 kali (41, 32, 23, 14) X = 6 terjadi 5 kali (51, 42, 33, 24, 15) X = 7 terjadi 6 kali (61, 52, 43, 34, 25, 16) X = 8 terjadi 5 kali (62, 53, 44, 35, 26) X = 9 terjadi 4 kali (63, 54, 45, 36) X = 10 terjadi 3 kali (64, 55, 46) X = 11 terjadi 2 kali (65, 56) X = 12 terjadi 1 kali (66)

30 Tabel 12.7 X f 2 1 1/36 (=0,028) 3 2/36 (=0,056) 4 3/36 (=0,083) 5 4/36 (=0,111) 6 5/36 (=0,139) 7 6/36 (=0,167) 8 9 10 11 12 36 1 (=1,00)

31

32 Dimana 1 dan 2 merupakan himpunan bagian

33 Misalnya A = mendapatkan 1B (satu burung),
berarti A terdiri dari 2 elemen yaitu Kejadian yang terdiri dari satu elemen dalam Ruang Sampel S, disebut kejadian elementer (elementary event)

34 Probabilitas memiliki batas mulai 0 sampai dengan 1 ( 0  P(Si)  1 )
Jika P(Si) = 0, disebut probabilitas kemustahilan, artinya kejadian atau peristiwa tersebut tidak akan terjadi. Jika P(Si) = 1, disebut probabilitas kepastian, artinya kejadian atau peristiwa tersebut pasti terjadi. Jika 0  P(Si)  1, disebut probabilitas kemungkinan, artinya kejadian atau peristiwa tersebut dapat atau tidak dapat terjadi.

35 A. HIMPUNAN 1.Pengertian Himpunan.
Himpunan adalah kumpulan objek yang didefinisikan dengan jelas dan dapat dibeda-bedakan. Setiap objek yang secara kolektif membentuk himpunan, disebut elemen atau unsur atau anggota himpunan. B = {1,2,3,4,5}

36 2.Penulisan Himpunan Dalam Statistik, himpunan dikenal sebagai populasi. Himpunan dilambangkan dengan pasangan kurung kurawal { }, dan dinyatakan dengan huruf besar: A, B,... Anggota himpunan ditulis dengan lambang , bukan anggota himpunan dengan lambang .

37 Himpunan dapat ditulis dengan 2 cara :
Cara Pendaftaran  Diskrit Unsur himpunan ditulis satu persatu/didaftar Contoh : A={a,i,u,e,o} , B={1,2,3,4,5} Cara Pencirian  Kontinyu Unsur himpunan ditulis dengan menyebutkan sifat-sifat / ciri-ciri himpunan tsb. Contoh : A={ X : x huruf hidup } B={ X : 1  x  5 }

38 3. Macam-macam Himpunan a.Himpunan Semesta
Himpunan yang memuat seluruh objek yang dibicarakan atau menjadi objek pembicaraan. Dilambangkan S atau U. Contoh : S=U={a,b,c,…..} S=U={ X : x bilangan asli}

39 b.Himpunan Kosong. Himpunan yang tidak memiliki anggota. Dilambangkan { } atau .

40 c.Himpunan Bagian. Himpunan yang menjadi bagian dari himpunan lain. Dilambangkan . Dalam statistik himpunan bagian merupakan sampel. Contoh : Himpunan A merupakan himpunan bagian B, jika setiap unsur A merupakan unsur B, atau A termuat dalam B, atau B memuat A. Dilambangkan : A  B.

41 Diagram Venn Himpunan Bagian
2 3

42 Komplemen Kejadian / event terdiri antara lain :
1. Kejadian komplementer 2. Interseksi (perpotongan) 3. union (gabungan) Komplemen Himpunan komplemen adalah himpunan semua unsur yang tidak termasuk dalam himpunan yang diberikan. Jika himpunannya A maka himpunan komplemennya dilambangkan A’ atau

43 Peraga 12.4 Diagram Venn Komplemen S A A

44 Operasi Irisan (interseksi)
Irisan dari himpunan A dan B adalah himpunan semua unsur yang termasuk di dalam A dan di dalam B. Irisan dari himpunan A dan himpunan B dilambangkan A  B.

45 Diagram Venn Operasi Irisan
Peraga 12.5

46 Misalnya A adalah jumlah uang yang dapat digunakan (yang tersedia)
bagi seorang ibu rumah tangga untuk berbelanja selama bulan Juli B = besarnya pengeluaran ibu rumah tangga tsb pd bulan Juli Rp milik A dan juga milik B

47 Kalau misalnya penghasilan suami dari ibu rumah tangga tsb meningkat,
sehingga B = besarnya pengeluaran ibu rumah tangga tsb pd bulan Juli Rp Rp A

48 5 10 A

49 Gabungan dari himpunan A dan himpunan B dilambangkan A  B.
Gabungan (Union) dua kejadian Gabungan himpunan A dan himpunan B adalah semua unsur yang termasuk di dalam A atau di dalam B. Gabungan dari himpunan A dan himpunan B dilambangkan A  B. A  B ={X:x  A, x  B, atau x  AB }

50 Diagram Venn Operasi Gabungan
Peraga 12.6

51 A = B = 2 3 4 5 6 7 8 9 10 11 12

52 Peraga 12.7 S K A

53 Peraga 12.8 S K A

54 Beberapa aturan dasar probabilitas
Secara umum ada 2 aturan : - aturan penjumlahan - aturan perkalian Aturan Penjumlahan Kejadian Saling Meniadakan. ( Mutually exclusive event) Dua peristiwa atau lebih disebut peristiwa saling lepas jika kedua atau lebih peristiwa itu tidak dapat terjadi pada saat yang bersamaan.

55 Jika peristiwa A dan B saling lepas, probabilitas terjadinya peristiwa tersebut adalah :
P (A atau B) = P (A) + P (B) atau P ( A  B) = P (A) + P (B) Untuk 3 kejadian saling meniadakan P ( A  B  C) = P (A) + P (B) + P (C) (12.5) (12.6)

56 Contoh 12.7 : Sebuah mesin otomatis pengisi kantong plastik dengan campuran beberapa jenis sayuran menunjukkan bahwa sebagian besar kantong plastik berisi sayuran tsb memuat berat yg benar. Meskipun demikian, karena ada sedikit variasi dalam ukuran sayuran yg ada, sebuah paket kantong plastik mungkin sedikit lebih berat atau lebih ringan dari berat standar. Pengecekan terhadap 4000 paket menunjukkan hasil sbb: Hitung berapa probabilitas bahwa paket tertentu beratnya akan lebih ringan atau lebih berat dari berat standar?

57 Tabel 12.8 Berat Kejadian Jumlah padat Probabilitas Lebih ringan A 100 Standar B 3600 Lebih berat C 300 Jumlah 4000 1,000 P (A atau C) = P ( A  C) = P (A) + P (C) = 0, ,075 = 0,10

58 Peraga 12.9 A B C Diagram Venn
Kejadian yang saling meniadakan dapat digambarkan dengan sebuah diagram Venn. Dalam kejadian yg saling meniadakan tsb, utk 3 jenis kejadian A,B dan C, diagram Venn nya dapat dilihat berikut ini. Peraga 12.9 Diagram Venn A B C Jadi diagram Venn dr ke 3 kejadian tsb tidak ada yg saling beririsan (intersection), atau

59 Suatu ruang sampel S dapat dibagi habis (exhaustive) apabila dipecah
menjadi himpunan-himpunan bagian (subset) yg merupakan kejadian-kejadian yg saling meniadakan. S1 S2 Sk N1 N2 Nk (12.8)

60 Suatu himpunan yang dibagi habis menjadi himpunan-himpunan yang
lebih kecil (subset) disebut himpunan partisi (partition set). Misal ada 100 barang (S=100), diketahui 25 rusak (S1=25), maka sisanya sebanyak 75 tidak rusak (S2=75) S = S1 + S2

61 Kejadian tidak saling meniadakan.
Dua peristiwa atau lebih disebut peristiwa tidak saling lepas, apabila kedua peristiwa atau lebih tersebut dapat terjadi pada saat yang bersamaan. Peristiwa tidak saling lepas disebut juga peristiwa bersama.

62 Departemen Pariwisata memilih sebuah sampel dari 200 wisatawan
yang mengunjungi Jakarta. Dari hasil survey ternyata diperoleh bahwa 120 orang telah mengunjungi Taman Mini Indonesia Indah, dan 100 orang telah mengunjungi Taman Impian Jaya Ancol. Berapa probabilitas bahwa seorang wisatawan yang terpilih telah mengunjungi Taman Mini Indonesia Indah atau Taman Impian Jaya Ancol ?. Yang telah mengunjungi Taman Mini Indonesia Indah 120/200 = 0,60 Yang telah mengunjungi Taman Impian Jaya Ancol 100/200 = 0,50 Jumlahnya 0,60 + 0,50 = 1,1 > 1 Hal ini terjadi karena ada beberapa wisatawan yang mengunjungi kedua tempat wisata tersebut, sehingga mereka dihitung 2 kali. Ternyata setelah diteliti dari respon survei terdapat 60 orang yang mengunjungi kedua tempat wisata diatas.

63 Jika dua kejadian saling ber-interseksi (beririsan), probabilitasnya disebut sebagai probabilitas bersama (joint probability). Secara ringkas, aturan umum penjumlahan untuk kejadian-kejadian yang tidak saling meniadakan pada dua kejadian A dan B dapat ditulis P (A atau B ) = P(A) + P(B) - P(A dan B) P ( A  B) = P(A) + P(B) – P(A  B) (12.9) P (Taman Mini atau Ancol) = P(Taman Mini) + P(Ancol) – P(Taman Mini atau Ancol)

64

65 Contoh 12.8 : Berapa probabilitas bahwa sebuah kartu yang dipilih secara acak dari satu set kartu yg berisi 52 kartu adalah bergambar raja (king) atau bergambar hati (heart)? Tabel 12.9 Kartu Probabilitas Penjelasan Raja (King) 4 kartu raja dalam 1 set kartu Hati (Heart) 13 kartu heart dalam 1 set kartu Raja bergambar hati 1 kartu raja bergambar heart dalam 1 set kartu

66 (12.9) P (A atau B ) = P ( A  B) = P(A) + P(B) - P(A dan B) B A AB

67 Merencanakan untuk membeli
Contoh 12.9 : Sebuah perusahaan elektronik mengambil sampel 1000 rumah tangga dan responden yang ditanya tentang apakah mereka merencanakan untuk membeli televisi ukuran besar atau tidak. Setahun berikutnya responden yang sama ditanya apakah mereka benar-benar telah membeli televisi ukuran besar tsb atau tidak. Hasilnya dapat dilihat pada tabel berikut: Tabel Merencanakan untuk membeli Benar2 telah membeli Total Ya Tidak 200 50 250 100 650 750 300 700 1000

68 Merencanakan untuk membeli
Tabel Merencanakan untuk membeli Benar2 telah membeli Total Ya Tidak 200 50 250 100 650 750 300 700 1000 (12.9) P ( A  B) = P(A) + P(B) – P(A  B)

69 Contoh Menurut catatan yang ada pada Sekretariat Fakultas Ekonomi suatu Universitas di Jakarta, ada 500 orang mahasiswa tingkat persiapan yang mengambil matakuliah Aljabar Linear (A), Kalkulus (K) dan Pengantar Statistik (S) dengan rincian sbb: Aljabar Linear = 329 orang Kalkulus = 186 orang Pengantar Statistik = 295 orang Aljabar Linear dan Kalkulus = 83 orang Aljabar Linear dan Pengantar Statistik = 217 orang Kalkulus dan Pengantar Statistik = 63 orang Kalkulus Pengantar Statistik dan Aljabar Linear = 53 orang

70 Kalau kita memilih secara acak (random) seorang mahasiswa dari daftar nama ke-500 orang mahasiswa tsb, Berapakah probabilitasnya jika mahasiswa tsb: a. Mengambil ketiga matakuliah b. Mengambil Aljabar Linear tetapi bukan Pengantar Statistik c. Mengambil Kalkulus tetapi bukan Aljabar Linear d. Mengambil Pengantar Statistik tetapi bukan Kalkulus e. Mengambil Aljabar Linear atau Pengantar Statistik tetapi bukan Kalkulus f. Mengambil Aljabar Linear tetapi bukan Kalkulus atau bukan Pengantar Statistik

71 K A 82 93 30 53 164 10 68 S

72 a. Mengambil ketiga matakuliah
b. Mengambil Aljabar Linear tetapi bukan Pengantar Statistik c. Mengambil Kalkulus tetapi bukan Aljabar Linear e. Mengambil Aljabar Linear atau Pengantar Statistik tetapi bukan Kalkulus

73 - Kejadian tak bebas (dependent event)
Aturan Perkalian - Kejadian tak bebas (dependent event) - Kejadian bebas (independent event)

74 Kejadian tak bebas (bersyarat)
Probabilitas terjadinya kejadian A dengan syarat bahwa B sudah terjadi atau akan terjadi, disebut probabilitas bersyarat (conditional probability), atau biasa ditulis P (A/B) P(A dari B)

75 Misalkan jumlah seluruh mahasiswa suatu Universitas (Swasta atau Negeri) sama dengan 10.000 orang.
Himpunan A mewakili mahasiswa lama (a). Himpunan B mewakili mahasiswa putri (b). Sedangkan 800 dari mahasiswa putri merupakan mhs lama (c). Berapa probabilitasnya bahwa mahasiswa tersebut mhs putri lama?. (merupakan proporsi mahasiswa lama putri dengan seluruh mahasiswa putri)

76 Berapa probabilitasnya bahwa mahasiswa tersebut mhs putri lama?.
(merupakan proporsi mahasiswa lama putri dengan seluruh mahasiswa lama)

77 mahasiswa putri lama = 800 = (c)
A = 2000 mahasiswa lama (a) S = , seluruh mahasiswa (N) mahasiswa putri lama = 800 = (c) B = 3500 mahasiswa putri (b)

78

79 Pada umumnya probabilitas bersyarat dirumuskan sbb:
(12.10) (12.11)

80 Contoh : Sebuah dadu di lemparkan ke atas sebanyak 2 kali, dan X adalah jumlah mata dadu dari hasil lemparan tsb. Apabila lemparan yg pertama keluar mata 2 dan lemparan kedua keluar mata 4, maka X = = 6. Juga apabila pada lemparan pertama yg keluar adalah mata 3 dan yg kedua 5, maka X = = 8, dan seterusnya. Jika A = {x : x < 5} dan B = {x : x suatu bilangan ganjil}, Hitunglah P (A/B) dan P (B/A).

81 Tabel 1 2 3 4 5 6 11 12 13 (14) 15 (16) 21 22 (23) 24 (25) 26 31 (32) 33 (34) 35 (36) (41) 42 (43) 44 (45) 46 51 (52) 53 (54) 55 (56) (61) 62 (63) 64 (65) 66

82 S = 36 titik sampel = 36 hasil eksperimen (N = 36)
A = (11 = 2, 12 = 3, 13 = 4, 21 = 3, 22 = 4, 31 = 4  semuanya memberikan nilai X < 5, a = 6) B = (21, 41, 61, 12, 32, 52, 23, 43, 63, 14, 34, 54, 25, 45, 65, 16, 36, 56, semuanya memberikan X ganjil  X = 3, 5, 7, 3, ….) b = 18 = 2 (12 dan 21, semuanya memberikan nilai X < 5 dan ganjil)

83 (12.10) (12.11)

84 Contoh : Jumlah pelamar untuk menjadi dosen pada Fakultas Ekonomi Universitas Indonesia ada 100 orang. Masing-masing pelamar mempunyai kesempatan yg sama untuk diterima, yaitu mempunyai probabilitas sebesar 0,01. Para pelamar ada yg bergelar Doktor dan ada yg tidak, ada yg menikah dan ada yg belum, ada pria dan wanita. Berdasarkan data yg masuk ke Sekretariat FE-UI, diperoleh rincian sbb: Bukan Doktor Sudah menikah Belum menikah Pria 3 12 Wanita 10 5 Doktor Sudah menikah Belum menikah Pria 40 10 Wanita

85 Bukan Doktor Sudah menikah Belum menikah Pria 3 12 Wanita 10 5 Doktor Sudah menikah Belum menikah Pria 40 10 Wanita Misalkan W, M, D mewakili kejadian bahwa pelamar yang terpilih wanita, menikah, dan bergelar Doktor, W = = 35 di antara 100 pelamar (S)

86

87 Probabilitas kejadian interseksi
Rumus Aturan Umum dari Perkalian Probabilitas (12.12)

88 Contoh : Kita mengambil secara acak 2 kartu berturut-turut dari suatu set (kumpulan) kartu bridge. Berapa probabilitasnya bahwa pengambilan kartu pertama berupa kartu As, yg kedua juga kartu As? (hasil pengambilan pertama tidak dikembalikan lagi / without replacement dan hasil pengambilan kedua dipengaruhi oleh hasil pengambilan pertama)

89 (12.13) Kalau kejadiannya A, B dan C (3 kejadian), maka : Jadi
Pembuktiannya : misalnya Jadi Terbukti

90 Merencanakan untuk membeli
Diagram pohon Sebuah perusahaan elektronik mengambil sampel 1000 rumah tangga dan responden yang ditanya tentang apakah mereka merencanakan untuk membeli televisi ukuran besar atau tidak. Setahun berikutnya responden yang sama ditanya apakah mereka benar-benar telah membeli televisi ukuran besar tsb atau tidak. Hasilnya dapat dilihat pada tabel berikut: Tabel Merencanakan untuk membeli Benar2 telah membeli Total Ya Tidak 200 50 250 100 650 750 300 700 1000

91 Tidak merencanakan membeli
Diagram pohon Benar telah membeli Merencanakan membeli Tidak membeli Seluruh responden Benar telah membeli Tidak merencanakan membeli Tidak membeli

92 Kejadian Bebas (Independent Event)
Apabila terjadinya peristiwa yang satu tidak mempengaruhi terjadinya peristiwa yang lain. P (AB) = P(A) P(B) = P(B) P(A) (A dan B merupakan kejadian bebas) (12.14)

93 Contoh : Satu mata uang logam Rp 50 dilempar ke atas sebanyak 2 kali. Jika A1 adalah lemparan pertama yg mendapat gambar burung (B), dan A2 adalah lemparan kedua yang mendapatkan gambar burung (B), berapakah P (A1A2) ?

94 Contoh : Kita mengambil 2 lembar kartu berturut-turut secara acak dari satu set kartu bridge. Sebelum pengambilan kedua, hasil pengambilan pertama dikembalikan lagi sehingga hasil pengambilan pertama tidak mempengaruhi hasil pengambilan kedua. Kalau A1 = kartu As wajik (diamond) dan A2 = kartu As hati (heart). Berapa P (A1A2) ?

95 Peraga 12.14 S = N

96 Contoh :

97 Probabilitas marginal
Probabilitas terjadinya suatu Peristiwa yang tidak memiliki hubungan dengan terjadinya peristiwa lain.

98 Sebagai iliustrasi sederhana, misalkan kita memproduksi suatu jenis baterai di tiga pabrik yg peralatan dan karyawannya berbeda. Produksi mingguan pabrik pertama (S1 = 500), pabrik kedua (S2 = 2.000), dan pabrik ketiga (S3 = 1.500). Selanjutnya, misalkan diketahui besarnya nilai probabilitas barang rusak dari pabrik pertama, P(R/S1) adalah 0,020, probabilitas barang rusak dari pabrik kedua, P(R/S2) adalah 0,015, dan probabilitas barang rusak dari pabrik ketiga, P(R/S3) adalah 0,030 Baterai yang diproduksi oleh pabrik tsb digunakan untuk menyuplai pabrik mobil. Dengan demikian pabrik mobil setiap minggunya menerima suplai baterai sebanyak 4000, dari S1 + S2 + S3 (ingat S adalah ruang sampel)

99 Jika satu baterai dipilih secara acak:
Apabila pemilik pabrik tsb mengambil 1 baterai secara acak (random), berapa probabilitasnya bahwa baterai yg diambil oleh pemilik pabrik mobil tsb rusak. Probabilitas Marjinal = P(R) =

100 Contoh : Suatu Universitas mempunyai mahasiswa sebanyak orang yg terdiri dari 4 Fakultas, yaitu FE = 400 mahasiswa, FH = 200 mahasiswa, FT = 150 mahasiswa, dan FK = 250 mahasiswa. Dari mahasiswa tsb ada yg menjadi anggota Menwa (Resimen Mahasiswa). Dari FE = 200 orang, FH = 50 orang, FT = 25 orang, dan FK = 150 orang. Jika suatu saat kita bertemu dgn salah seorang mahasiswa (anggap saja sebagai kejadian yg acak), berapa probabilitas bahwa mahasiswa tsb seorang anggota Menwa?

101

102 S = 1000 H 200 T 150 E 400 ME MH 50 K 250 MK MT 25 M

103 Rumus Bayes Sebagai ilustrasi, misalkan terdapat 3 kotak yang sama ukurannya dan masing-masing berisi 2 bola. Kotak 1 = A1 2 M 1 M 1 P 2 P Kotak 2 = A2 Kotak 3 = A3 - Anda diminta memilih 1 kotak secara acak (random), - kemudian anda diminta lagi memilih 1 bola dari kotak terpilih, juga secara acak. - Anda diberitahu bahwa bola yang anda pilih tersebut ternyata bola berwarna merah. Berapakah probabilitasnya bahwa kotak yang terpilih adalah kotak Pertama, yang berisi 2 bola merah? (kotak pertama/merah)

104 Rumus Bayes S Ax A1 A2 Ai A1A A2A AiA AxA A

105 K = 3, A1 , A2 , A3 (kejadian, pemilihan kotak)
Kotak 1 = A1 2 M 1 M 1 P 2 P Kotak 2 = A2 Kotak 3 = A3 K = 3, A1 , A2 , A3 (kejadian, pemilihan kotak) Yaitu probabilitas bahwa kotak 1, 2, 3 terpilih, Masing-masing kotak mempunyai probabilitas yang sama A merupakan kejadian terpilihnya bola merah setelah salah satu kotak terpilih Yaitu probabilitas untuk mendapatkan bola merah, dengan syarat kotak 1, 2, 3 terpilih

106 Kotak 1 = A1 2 M 1 M 1 P 2 P Kotak 2 = A2 Kotak 3 = A3

107 Yaitu probabilitas kotak pertama terpilih dgn syarat bola merah terpilih
Yaitu probabilitas kotak 2 terpilih dgn syarat bola merah terpilih Yaitu probabilitas kotak 3 terpilih dgn syarat bola merah terpilih

108 Contoh : Suatu daftar pertanyaan dikirimkan kepada para responden untuk mengetahui penggunaan mobil keluarga. Kita anggap suatu nilai “a priori probability” bahwa daftar pertanyaan tersebut akan diisi oleh keluarga yang tinggal di Jakarta adalah 0,5 Probabilitas bahwa daftar pertanyaan diisi oleh mereka yang berpenghasilan tinggi adalah 0,3 Berdasarkan pengalaman, probabilitas bahwa daftar pertanyaan yang dikirim kepada penduduk di luar Jakarta diisi oleh mereka yang berpenghasilan tinggi sama dengan 0,2 Kita gunakan simbol berikut : A1 = keluarga yang tinggal di luar Jakarta A2 = keluarga yang tinggal di Jakarta A = keluarga yang berpenghasilan tinggi

109 A1 = keluarga yang tinggal di luar Jakarta
A2 = keluarga yang tinggal di Jakarta A = keluarga yang berpenghasilan tinggi

110 Misalkan daftar pertanyaan yang sudah diisi kita terima, sedangkan kode
mengenai tempat responden sudah dihapus. Dengan demikian, kita tidak mengetahui apakah responden tsb tinggal di luar Jakarta atau di Jakarta. Kalau daftar pertanyaan tsb diisi oleh keluarga yang berpenghasilan tinggi. Berapa probabilitasnya bahwa responden atau keluarga tsb bertempat tinggal di luar Jakarta, P(A1/A) ?

111 PERMUTASI & KOMBINASI Permutasi
Suatu penyusunan atau pengaturan beberapa objek ke dalam suatu urutan tertentu, dimana urutan itu penting Contoh : ABC BCA Kombinasi adalah suatu penyusunan beberapa objek tanpa memperhatikan urutan / urutan tidak penting objek tersebut . Contoh : ABC = ACB = BCA LUCY = UCYL

112 Misalkan seorang direktur pemasaran suatu perusahaan mempunyai 4 alternatif didalam memasang iklan (Koran, Majalah, TVRI, RRI) dan 2 kemungkinan rancangan pembungkus (packaging design), yaitu memakai botol plastik dan kotak karton. Banyaknya kombinasi iklan dan rencana pembungkus = k . m = 4 x 2 = 8 Kalau dinyatakan dalam diagram pohon (tree diagram), gambarnya adalah sbb :

113 PERMUTASI & KOMBINASI Koran Majalah TVRI k x m = 4 x 2 = 8 RRI
m 1 Plastik Koran k 1 m 2 Karton Majalah m 3 Plastik k 2 m 4 Karton m 5 Plastik TVRI k 3 m 6 Karton k x m = 4 x 2 = 8 RRI m 7 Plastik k 4 m 8 Karton

114 Misalnya, seorang pemegang saham setelah menerima keuntungan selama setahun mempunyai 2 alternatif, yaitu menghabiskan uang keuntungan itu untuk keperluan konsumsi atau akan menanamkan uangnya kembali. Selama 3 tahun dia akan dihadapkan kepada alternatif sebanyak 23 = 8 Perhatikan diagram pohon (tree diagram) berikut :

115 mk = 23 = 8 Tahun pertama 2 1 Tahun kedua 3 1 2 4 Tahun ketiga 1 2 3 4
5 6 7 8

116 Contoh 12.25 Ke Denpasar ( 3 pilihan ) Ke Surabaya Caranya = 6
1 M 1 M M Dari Jakarta 1 2 G 2 M G M 3 B 3 M B 1 M 4 G M 2 2 G 5 G G G 3 B 6 G B

117 Permutasi Pengertian Permutasi
Suatu penyusunan atau pengaturan beberapa objek ke dalam suatu urutan tertentu, dimana urutan itu penting Contoh : ABC BCA

118 Contoh : 3 Objek ABC, pengaturan objek tersebut adalah ABC, ACB, BAC, BCA, CAB, CBA yang disebut permutasi. Jadi permutasi 3 objek menghasilkan 6 pengaturan dengan cara yang berbeda. A B C 3 2 1 6 5 4 Permutasi Rank

119 3 cara  A, B dan C Jadi banyaknya permutasi merupakan hasil kali 3 x 2 x 1 = 6 Kalau ada 4 calon, banyaknya permutasi adalah 4 x 3 x 2 x 1 = 24 Banyaknya permutasi = m(m-1)(m-2)…..(1) m = banyaknya elemen

120 Rumus-rumus Permutasi
Permutasi dari m obyek tanpa pengembalian. a. Permutasi dari m objek seluruhnya. (12.18) Permutasi m obyek diambil m setiap kali

121 b. Permutasi sebanyak x dari m obyek.
(12.19) Permutasi m obyek diambil x setiap kali

122 Contoh Misalnya suatu daftar memuat 10 rencana investasi yang dikemukakan oleh direksi perusahaan kepada suatu dewan komisaris, dimana setiap anggota dewan komisaris diminta untuk memberikan rank atau penilaian terhadap 5 rencana investasi tsb yang dianggap feasible. Ada berapa cara ranking dari 10 rencana investasi kalau diambil 5 setiap kali. Untuk m = x = 5

123 Contoh Untuk m = x = 5

124 KOMBINASI Kombinasi adalah suatu penyusunan beberapa objek tanpa memperhatikan urutan objek tersebut . ABC = ACB = BCA LUCY = UCYL

125 Rumus-rumus Kombinasi :
a. Kombinasi x dari m objek yang berbeda. (12.20) Combinasi m obyek diambil x setiap kali

126 Contoh 12.27 a. Jika N = 3  X1 X2 X3 , n = 2, maka
3 sampel tsb. ialah : X1X2 ; X1X3 dan X2X3

127 b. Jika N = 10  X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 , n = 3, maka contoh : X1X2X3 ; X1X3X5 ; X8X9X10

128 Contoh 8M 3P 9B Suatu kotak berisi 8 bola merah (8M), 3 putih (3P) dan 9 biru (9B). Apabila 3 bola dipilih secara acak, hitung probabilitas bahwa: a. Ketiga-tiganya merah (M1M2M3). b. Ketiga-tiganya putih (P1P2P3). c. Dua merah, satu putih. d. Paling sedikit satu putih. e. Masing-masing warna diwakili. f. Hasilnya mempunyai urutan: merah, putih, biru (M1P2B3).

129 a) Cara 1 : Pengambilan pertama, kedua, ketiga mendapatkan bola merah Cara 2 :

130 b) Cara 1 : Pengambilan pertama, kedua, ketiga mendapatkan bola putih Cara 2 :

131 c. P (2 merah dan 1 putih)

132 d. P (tak ada yang putih) P (tak ada yang putih) e. P (setiap warna diwakili)

133 f) Cara 1 : Cara 2 :

134 Contoh Tembakan dari seorang penembak mempunyai probabilitas sebesar 0,8 untuk mengenai sasaran yang dituju. Jika tembakan dilakukan 7 kali, berapa probabilitasnya bahwa 4 diantaranya mengenai sasaran?

135 Contoh Jika m = 7 dan x = 4 maka :

136 Apabila variabel x adalah banyaknya tembakan yang mengenai sasaran
dari 7 tembakan, maka P(x = 4) atau probabilitas bahwa 4 tembakan mengenai sasaran adalah 0,1147. Dengan jalan yg sama, dapat ditunjukkan bahwa P(x = 2) = 0,0043 P(x = 6) = 0,3670 P(x = 7) =0,0048 Apabila probabilitas dari setiap nilai variabel x ( = 0, 1, 2. 3, 4, 5, 6, 7) dihitung sehingga diketahui nilainya, akan kita peroleh apa yang disebut distribusi probabilitas untuk x.

137


Download ppt "BAB 12 PROBABILITAS."

Presentasi serupa


Iklan oleh Google