Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

SIGNALISED INTERSECTIONS

Presentasi serupa


Presentasi berjudul: "SIGNALISED INTERSECTIONS"— Transcript presentasi:

1 SIGNALISED INTERSECTIONS
TS4273 Traffic Engineering SIGNALISED INTERSECTIONS

2 First Traffic Light Traffic lights were used before the advent of the motorcar. In 1868, British railroad signal engineer J P Knight invented the first traffic light, a lantern with red and green signals. It was installed at the intersection of George and Bridge Streets in front of the British House of Commons to control the flow of horse buggies and pedestrians.

3 Prinsip-prinsip desain simpang bersinyal
Suatu persimpangan membutuhkan lampu lalulintas jika waktu tunggu rata-rata kendaraan sudah lebih besar daripada waktu tunggu rata-rata kendaraan pada persimpangan dengan lampu lalulintas.

4 Prinsip-prinsip desain simpang bersinyal
Waktu tunggu rata-rata kendaraan pada persimpangan bersinyal dipengaruhi oleh: Arus lalulintas pada masing-masing arah, Waktu antara kedatangan kendaraan dari masing-masing arah, Keberanian pengemudi untuk menerima waktu antara yang tersedia guna menyeberangi jalan.

5 Prinsip-prinsip desain simpang bersinyal
Unsignalised Signalised Traffic Flow Delay

6

7 Scope of IHCM Signalised Intersection Analyses
Isolated, fixed-time controlled signalised intersections with normal geometry layout (four-arm and three-arm) and traffic signal control devices. Coordinated traffic signal control is normally needed if the distance to adjacent signalised intersections is small (< 200m).  Persimpangan Raya Darmo – Polisi Istimewa & Raya Darmo – RA Kartini.

8 Objectives of IHCM Signalised Intersection Analyses
To avoid blockage of an intersection by conflicting traffic streams, thus guaranteeing that a certain capacity can be maintained even during peak traffic conditions;

9 Objectives of IHCM Signalised Intersection Analyses
To facilitate the crossing of a major road by vehicles and/or pedestrians from a minor road; To reduce the number of traffic accidents caused by collisions between vehicles in conflicting directions.

10 Potential Conflict at Intersections

11 Primary and Secondary Conflictis in a Four-Arm Signalised Intersections

12 Time Sequence for Two-Phase Signal Control
Street A Street B

13 Time Sequence for Four-Phase Signal Control

14 Time Sequence for Two-Phase Signal Control
Street A Street B

15

16

17 Purpose of the Intergreen Period
Warn discharging traffic that the phase is terminated.  Amber Period (for urban traffic signal in Indonesia is normally 3,0 sec) Certify that the last vehicle in the green phase which is being terminated receives adequate time to evacuate the conflict zone before the first advancing vehicle in the next phase enters the same area.  All-Red Period

18 Signal Phasing Arrangements
Introducing more than two phases normally leads to an increase of the cycle time and of the ratio of time allocated to switching between phases (especially for isolated and fixed-controlled).

19 Signal Phasing Arrangements
Although this may be beneficial from the traffic safety point of view, it normally means that the overall capacity of the intersection is decreased.

20 Basic Model for Saturation Flow (Akcelik 1989)

21 Basic Model Saturation Flow
Discharge rate starts from 0 at the beginning of green and reaches its peak value after sec Effective Green = Displayed Green Time – Start Loss + End Gain Start loss  End gain  4,8 sec (MKJI p.2-12) Effective Green = Displayed Green Time

22 Basic Model Saturation Flow
Base saturation flow is different between Protected approach and Opposed approach For protected approach  S0 = 600 x We For opposed approach  S0 in Indonesia usually lower where there is a high ratio of right turning movements, compare with Western models.

23 Perhitungan Arus Jenuh Metode Time Slice
Arus jenuh/jam  (3.600/5)x4,5 = smp/jam Jika lebar lajur = 4,0m  (3.240/4) = 810 smp/jam/m Maka  S = 810 x We

24 Traffic Safety Considerations
Traffic accident rate for signalised intersections has been estimated as 0,43 accidents/million incoming vehicles as compare to 0,60 for unsignalised intersections and 0,30 for roundabouts.

25 STEP A-1: Geometric, Traffic Control and Environmental Conditions
General information (date, handled by, city, etc.) City size (to the nearest 0,1 M inhabitants) Signal phasing & timing Left turn on red (LTOR) Approach code Road environment and level of side friction Median Gradient Approach width (to the nearest tenth of a meter)

26 Geometry of Signalised Intersection

27 STEP A-2: Traffic Flow Conditions
Vehicle Type pce for Approach Type Protected Opposed Light Vehicle (LV) 1,0 Heavy Vehicle (HV) 1,3 Motorcycle (MC) 0,2 0,4 Q = QLV + (QHV x pceHV) + (QMC x pceMC)

28 STEP B-1: Signal Phasing and Timing
If the number and types of signal phases are not known, two-phase control should be used as a base case. Separate control of right-turning movements should normally only be considered if a turning-movement exceeds 200 pcu/h and has a separate lane.

29 STEP B-1: Signal Phasing and Timing
Early start = leading green  one approach is given a short period before the start of the green also in the opposing direction (usually 25%-33% from total green time) Late cut-off = lagging green  the green light in one approach is extended a short period after the end of green in the opposing direction. The length of the leading and the lagging green should not be shorter than 10 sec.

30 STEP B-2: Intergreen time and lost time
Intersection Size Mean Road Width Intergreen Time Default Values Small 6 – 9 m 4 sec/phase Medium 10 – 14 m 5 sec/phase Large ≥ 15 m ≥ 6 sec/phase Only for planning purposes !!!

31 STEP B-2: Intergreen time and lost time
For operational and design analysis !!! LEV, LAV  distance from stop line to conflict point for evacuating and advancing vehicle (m) lEV  length of evacuating vehicle (m) VEV, VAV  speed of evacuating and advancing vehicle (m/sec)

32

33 STEP B-2: Intergreen time and lost time
VAV  10m/sec (motor vehicles) VEV  10m/sec (motor vehicles) VEV  3m/sec (un-motorised) VEV  1,2m/sec (pedestrians) lEV  5m (LV or HV) lEV  2m (MC or UM)

34 STEP B-2: Intergreen time and lost time
IG  Intergreen = Allred + Amber The length of AMBER usually 3,0 sec

35 STEP C-1: Approach Type PROTECTED (P)  Discharge without any conflict between right-turning movements and straight-through/left-turning movements.

36 STEP C-1: Approach Type OPPOSED (O)  Discharge with conflict between right-turning movements and straight-through/left-turning movements from different approaches with green in the same phase.

37 STEP C-2: Effective Aproach Width (We)
Without LTOR For Approach Type P (Q = QST) If WEXIT  We x (1 - pRT - pLT)  We = WEXIT

38

39 STEP C-2: Effective Aproach Width (We)
If WLTOR ≥ 2m (it is assumed that the LTOR vehicle can bypass the other vehicle)  We = min { (WA-WLTOR) , (WENTRY) } For Approach Type P (Q = QST) If WEXIT < We x (1 – pRT)  We = WEXIT

40 STEP C-2: Effective Aproach Width (We)
If WLTOR < 2m (it is assumed that the LTOR vehicle cannot bypass the other vehicle)  We = min { (WA) , (WENTRY+WLTOR) , (Wax(1+pLTOR)-WLTOR) } For Approach Type P (Q = QST) If WEXIT < We x (1 – pRT – pLTOR)  We = WEXIT

41 STEP C-3: Base Saturation Flow (S)
For protected approach

42 STEP C-3: Base Saturation Flow (S)
For Approach Type P S0  base saturation flow (pcu/hg) We  effective width (m) Figure C-3:1 page 2-49

43 STEP C-3: Base Saturation Flow (S)
For Approach Type O (opposed) QRT and QRTO (Column 14 Form SIG-II opposed discharge right-turning) Figure C-3:2 page 2-51 for approaches without separate right-turning. Figure C-3:3 page 2-52 for approaches with separate right-turning. Use interpolation if approach width larger or smaller than actual We

44 STEP C-3: Base Saturation Flow (S)
Ex: without separate right-turning lane QRT = 125 pcu/h, QRTO = 100 pcu/h Actual We = 5,4m Obtain from Figure C-3:2 p (We=5 & We=6) S6,0 = (pcu/hg) ; S5,0 = (pcu/hg) Calculate; S5,4 =(5,4-5,0)x(S6,0 - S5,0)+ S5,0 =0,4( )  (pcu/hg)

45 STEP C-3: Base Saturation Flow (S)
If right-turning movement > 250 pcu/h, protected signal phasing should be considered For No Separate RT-lane If QRTO < 250 pcu/h Determine SPROV for QRTO = 250 pcu/h Determine Actual S as S = SPROV – [(QRTO - 250) x 8]pcu/h

46 STEP C-3: Base Saturation Flow (S)
For No Separate RT-lane If QRTO > 250 pcu/h Determine SPROV for QRTO and QRT= 250 pcu/h Determine Actual S as S = SPROV – [(QRTO + QRT - 500) x 2]pcu/h If QRTO < 250 pcu/h and QRT > 250 pcu/h Determine S as for QRT = 250 pcu/h

47 STEP C-3: Base Saturation Flow (S)
For Separate RT-lane If QRTO > 250 pcu/h QRT < 250 pcu/h Determine S from Figure C3:3 through extrapolation QRT > 250 pcu/h Determine SPROV as for QRTO and QRT= 250 pcu/h If QRTO < 250 pcu/h and QRT > 250 pcu/h Determine S from Figure C3:3 through extrapolation

48 STEP C-4: City Size Adjustment Factor FCS [ Table C-4:3 p.2-53]
Inhab. (M) FCS Very Small  0,1 0,82 Small > 0,1 -  0,5 0,88 Medium > 0,5 -  1,0 0,94 Large > 1,0 -  3,0 1,00 Very Large > 3,0 1,05

49 STEP C-4: Side Friction Adjustment Factor FSF [ Table C-4:4 p.2-53]

50 STEP C-4: Side Friction Adjustment Factor FSF [ Table C-4:4 p.2-53]

51 STEP C-4: Side Friction Adjustment Factor FSF [ Table C-4:4 p.2-53]

52 STEP C-4:Gradient Adjustments Factors FG [Figure C-4:1 p.2-54]
If G  0  1 – (0,01 x G) If G < 0  1 – (0,005 x G)

53 STEP C-4: Effect of Parking Adjustments Factors FP [Figure C-4:2 p
LP  distance between stop-line and first parked vehicle (m) WA  Width of the approach (m) g  Green time in the approach (default value 26 sec) It should not be applied in cases were the effective width is determined by the exit width.

54 STEP C-4: Right Turn Adjustments Factors FRT
FRT = pRT x 0.26

55 STEP C-4: Left Turn Adjustments Factors FLT
FLT = pLT x 0.16

56 Calculated the adjusted value of saturation flow S
SO  Base saturation flow FCS  City size FSF  Side friction FG  Gradient FP  Parking FRT  Right turn FLT  Left turn

57 STEP C-5: Flow/Saturation Flow Ratio
Calculate the Flow Ratio (FR) for each approach Calculate the Intersection Flow Ratio (IFR) Calculate the Phase Ratio (PR) for each phase Sum of the critical (highest) flow ratios for all consecutive signal phases in a cycle

58 STEP C-6: Cycle Time and Green Time
Unadjusted cycle time (Cua) Green time (g) Adjusted cycle time (c) LTI = S off all intergreen periods 2 phase  sec 3 phase  sec 4 phase  sec green times < 10 sec should be avoided !!!

59 Acceptable value normally 0,75 !!!
STEP D-1: Capacity Calculate the capacity of each approach Calculate the Degree of Saturation Acceptable value normally 0,75 !!! If the signal timing has been correctly done, DS will be nearly the same in all critical approaches !!!

60 STEP D-2: Need For Revisions
Increase of approach width (especially for the approaches with the highest critical FR value) Changed signal phasing (i.e. separate phase for right-turning traffic) Prohibition of right turning movements will normally increase capacity (i.e. reduction of the phase required).

61 STEP E-1: Preparations Fill in the information required in the head of Form SIG-V

62 STEP E-2: Queue Length For DS > 0,5
NQ1  number of pcu that remain from the previous green phase DS  degree of saturation = Q/C GR  green ratio C  capacity (pcu/h) = saturation flow x green ratio For DS  0,5

63 STEP E-2: Queue Length NQ2  number of queuing pcu that arrive during the red phase GR  green ratio = g/c g  green time (sec) c  cycle time (sec) DS  degree of saturation = Q/C Q  traffic flow (pcu/h)

64 STEP E-2: Queue Length QL  Queue length (m)
NQMAX  adjust NQ with desired probability for overloading [for planning and design  5%, for operation 5-10%] figure E-2:2 p.2-66 20  average area occupied per pcu (20 sqm) WENTRY  entry width (m)

65 STEP E-3: Stopped Vehicle
NS  stop rate NQ  total number of queuing vehicle Q  traffic flow (pcu/h) c  cycle time (sec)

66 STEP E-3: Stopped Vehicle
NSV  number of stopped vehicles Q  traffic flow (pcu/h) NS  stop rate

67 STEP E-4: Delay A  GR  green ratio DS  degree of saturation = Q/C

68 STEP E-4: Delay DT  mean traffic delay (sec/pcu) c  cycle time (sec)
NQ1  number of pcu that remain from the previous green phase C  capacity (pcu/h)

69 STEP E-4: Delay DGj  mean geometric delay for approach j (sec/pcu)
pSV  proportion of stopped vehicles in the approach = MIN (NS, 1) pT proportion of turning vehicles in the approach Geometric Delay for LTOR = 6 sec [p.2-69]

70 STEP E-4: Delay DI  average delay for the whole intersection
Average delay can be used as an indicator of the Level of Service (LOS) of each individual approach as well as of the intersection as a whole.

71 Indeks Tingkat Pelayanan (ITP) Tundaan per kendaraan (detik)
Indeks Tingkat Pelayanan (ITP) Lalulintas Di Persimpangan Dengan Lampu Lalulintas Indeks Tingkat Pelayanan (ITP) Tundaan per kendaraan (detik) A ≤ 5.0 B 5.1 – 15.0 C 15.1 – 25.0 D 25.1 – 40.0 E 40.1 – 60.0 F > 60.0 Sumber: Perencanaan & Pemodelan Transportasi, Tamin, 2000

72 Cara-cara untuk meningkatkan kapasitas Simpang Bersinyal
Pelebaran lengan pendekat Kapasitas tergantung pada arus jenuh yang melewati garis henti (lebar lengan pendekat). Melebarkan lengan pendekat  meningkatkan kapasitas persimpangan. Panjang dari pelebaran lengan pendekat juga sangat penting untuk diperhatikan.

73 Cara-cara untuk meningkatkan kapasitas Simpang Bersinyal
Menaikkan waktu siklus semakin lama waktu siklus  semakin besar kapasitas persimpangan  semakin tinggi antrian dan tundaan yang terjadi Menurut MKJI 1997 [p.2-60] kisaran waktu siklus adalah 40 s/d 130 detik Pada kondisi tertentu “terpaksa” digunakan waktu siklus > 130 detik.

74 Cara-cara untuk meningkatkan kapasitas Simpang Bersinyal
Perubahan pola fase Perlu dilakukan simulasi untuk mendapatkan pola fase yang paling efisien. Semakin sedikit fase  semakin tinggi kapasitas persimpangan  semakin besar kemungkinan konflik yang dapat terjadi. Umumnya jumlah fase yang digunakan berkisar antara 2 s/d 4. Siklus dengan 2 fase umumnya dilengkapi dengan early cut-off atau late-start.  persimpangan Raya Darmo – Polisi Istimewa

75 Cara-cara untuk meningkatkan kapasitas Simpang Bersinyal
Meminimalkan waktu antar-hijau Waktu antar-hijau diperlukan untuk menjamin keamanan kendaraan yang melewati simpang pada saat detik akhir hijau, agar tidak tertabrak kendaraan yang mendapatkan fase hijau berikutnya. Meminimalkan waktu hijau  mendekatkan garis henti dengan pusat persimpangan.

76 Cara-cara untuk meningkatkan kapasitas Simpang Bersinyal
Larangan belok kanan Meningkatkan kapasitas akibat pengurangan fase. Namun harus dilakukan manajemen lalulintas untuk melayani kendaraan yang hendak belok kanan dengan menyediakan U-turn atau Re-routing.

77 Prinsip-prinsip desain simpang secara umum di Indonesia
Jari-jari tikungan berkisar antara 6 s/d 9 meter Hindari jari-jari terlalu kecil  kendala manuver bagi bus & truk Fasilitas penyeberang jalan (zebra cross)  2,5 s/d 5 meter sejarak 2 meter didepan garis henti Panjang pelebaran harus lebih besar dari probabilitas panjang antrian terbesar

78 Prinsip-prinsip desain simpang secara umum di Indonesia
Jalur khusus bus berakhir pada awal panjang antrian terbesar Jika arus lalulintas belok kanan cukup besar, perlu dibuatkan jalur khusus belok kanan dilengkapi dengan rambu dan marka yang sesuai


Download ppt "SIGNALISED INTERSECTIONS"

Presentasi serupa


Iklan oleh Google