Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

6s-1Linear Programming William J. Stevenson Operations Management 8 th edition OPERATIONS RESEARCH.

Presentasi serupa


Presentasi berjudul: "6s-1Linear Programming William J. Stevenson Operations Management 8 th edition OPERATIONS RESEARCH."— Transcript presentasi:

1 6s-1Linear Programming William J. Stevenson Operations Management 8 th edition OPERATIONS RESEARCH

2 6s-2Linear Programming METODE TRANSPORTASI suatu metode yang digunakan untuk mengatur distribusi dari sumber-sumber yang menyediakan produk yang sama, ke tempat-tempat yang membutuhkan secara optimal

3 6s-3Linear Programming Metode Stepping-Stone  Suatu perusahaan yang mempunyai 3 buah pabrik di W, H, P. Perusahaan menghadapi masalah alokasi hasil produksinya dari pabrik-pabrik tersebut ke gudang- gudang penjualan di A, B, C Contoh :

4 6s-4Linear Programming Tabel Kapasitas pabrik PabrikKapasitas produksi tiap bulan W90 ton H60 ton P50 ton Jumlah200 ton

5 6s-5Linear Programming Tabel Kebutuhan gudang GudangKebutuhan tiap bulan A50 ton B110 ton C40 ton Jumlah200 ton

6 6s-6Linear Programming Tabel Biaya pengangkutan setiap ton dari pabrik W, H, P, ke gudang A, B, C Dari Biaya tiap ton (dalam ribuan Rp) Ke gudang AKe gudang BKe gudang C Pabrik W 2058 Pabrik H 152010 Pabrik P 251019

7 6s-7Linear Programming Penyusunan Tabel Alokasi 1. jumlah kebutuhan tiap-tiap gudang diletakkan pada baris terakhir 2. kapasitas tiap pabrik pada kolom terakhir 3. biaya pengangkutan diletakkan pada segi empat kecil Gudang AGudang BGudang C Kapasitas Pabrik Pabrik X 11 20 X 12 5 X 13 8 90 W Pabrik X 21 15 X 22 20 X 23 10 60 H Pabrik X 31 25 X 32 10 X 33 19 50 P Kebutuhan Gudang 50 11040200 Ke Dari Aturan

8 6s-8Linear Programming Penggunaan Linear Programming dalam Metode Transportasi Gudang AGudang BGudang C Kapasitas Pabrik Pabrik X 11 20 X 12 5 X 13 8 90 W Pabrik X 21 15 X 22 20 X 23 10 60 H Pabrik X 31 25 X 32 10 X 33 19 50 P Kebutuhan Gudang 50 11040200 Ke Dari Tabel Alokasi Minimumkan Z = 20X WA + 15X HA + 25X PA + 5X WB + 20X HB + 10X PB + 8X WC + 10X HC + 19X PC Batasan X WA + X WB + X WC = 90 X WA + X HA + X PA = 50 X HA + X HB + X HC = 60 X WB + X HB + X PB = 110 X PA + X PB + X PC = 50 X WC + X HC + X PC = 40

9 6s-9Linear Programming Prosedur Alokasi 1. Mulai dari sudut kiri atas dari X 11 dialokasikan sejumlah maksimum produk dengan melihat kapasitas pabrik dan kebutuhan gudang 2. Kemudian setelah itu, bila X ij merupakan kotak terakhir yang dipilih dilanjutkan dengan mengalokasikan pada X i,j+1 bila i mempunyai kapasitas yang tersisa 3. Bila tidak, alokasikan ke X i+1,j, dan seterusnya sehingga semua kebutuhan telah terpenuhi 1. Mulai dari sudut kiri atas dari X 11 dialokasikan sejumlah maksimum produk dengan melihat kapasitas pabrik dan kebutuhan gudang 2. Kemudian setelah itu, bila X ij merupakan kotak terakhir yang dipilih dilanjutkan dengan mengalokasikan pada X i,j+1 bila i mempunyai kapasitas yang tersisa 3. Bila tidak, alokasikan ke X i+1,j, dan seterusnya sehingga semua kebutuhan telah terpenuhi pedoman sudut barat laut (nortwest corner rule).

10 6s-10Linear Programming Tabel Alokasi tahap pertama dengan pedoman sudut barat laut Gudang AGudang BGudang C Kapasitas Pabrik Pabrik 2058 90 W Pabrik 152010 60 H Pabrik 251019 50 P Kebutuhan Gudang 50 11040200 Ke Dari 5040 60 10 40

11 6s-11Linear Programming Tabel Perbaikan Pertama Gudang A Gudang B Gudang C Kapasitas Pabrik Pabrik 20 58 90 W Pabrik 152010 60 H Pabrik 251019 50 P Kebutuhan Gudang 50 11040200 Ke Dari (-) (+) (-) 50 4090 5060 10 40 = 0 = 15 = 5 = 20= 5= 14

12 6s-12Linear Programming A) Tabel Pertama Hasil Perubahan Gudang A Gudang B Gudang C Kapasitas Pabrik Pabrik 20 58 90 W Pabrik 152010 60 H Pabrik 251019 50 P Kebutuhan Gudang 50 11040200 Ke Dari 90 50 10 40 = 0 = 15 = 5 = 20= 5= 14 Biaya transportasi = 90(5) + 50(15) + 10(20) + 10(10) + 40(19) = 2260

13 6s-13Linear Programming 6. Ulangi langkah-langkah tersebut mulai langkah nomor 2 sampai diperoleh biaya terendah Tabel Kedua Hasil Perubahan Gudang A Gudang B Gudang C Kapasitas Pabrik Pabrik 20 58 90 W Pabrik 152010 60 H Pabrik 251019 50 P Kebutuhan Gudang 50 11040200 Ke Dari (-)(+) (-) 90 50 10 40 = 0 = 15 = 5 = 20= 5= 14 20 30

14 6s-14Linear Programming B) Tabel Kedua Hasil Perubahan Gudang A Gudang B Gudang C Kapasitas Pabrik Pabrik 20 58 90 W Pabrik 152010 60 H Pabrik 251019 50 P Kebutuhan Gudang 50 11040200 Ke Dari 90 50 10 = 0 = 15 = 5 = 20= 5= 14 20 30 Biaya transportasi = 90(5) + 50(15) + 10(10) + 20(10) + 30(19) = 2070

15 6s-15Linear Programming C) Tabel Ketiga Hasil Perubahan Gudang A Gudang B Gudang C Kapasitas Pabrik Pabrik 20 58 90 W Pabrik 152010 60 H Pabrik 251019 50 P Kebutuhan Gudang 50 11040200 Ke Dari (-)(+) (-) 60 50 90 10 20 30 = 0 = 15 = 5 = 20= 5= 14 5030 Biaya transportasi = 60(5) + 30(8) + 50(15) + 10(10) + 50(10) = 1890

16 6s-16Linear Programming D) Tabel Keempat Hasil Perubahan Gudang A Gudang B Gudang C Kapasitas Pabrik Pabrik 20 58 90 W Pabrik 152010 60 H Pabrik 251019 50 P Kebutuhan Gudang 50 11040200 Ke Dari 60 50 10 30 = 0 = 15 = 5 = 20= 5= 14 50 Tabel D. tidak bisa dioptimalkan lagi, karena indeks perbaikan tidak ada yang negatif

17 6s-17Linear Programming TERIMAKASIH

18 6s-18Linear Programming TUGAS  Pelajari :  Metode Vogel atau Vogel’s Approximation Method (VAM)

19 6s-19Linear Programming Metode Vogel’s Approximation Langkah-langkah nya: 1.Susunlah kebutuhan, kapasitas masing-masing sumber, dan biaya pengangkutan ke dalam matrik 2.Carilah perbedaan dari dua biaya terkecil (dalam nilai absolut), yaitu biaya terkecil dan terkecil kedua untuk tiap baris dan kolom pada matrik (Cij) 3.Pilihlah 1 nilai perbedaan-perbedaan yang terbesar di antara semua nilai perbedaan pada kolom dan baris 4.Isilah pada salah satu segi empat yang termasuk dalam kolom atau baris terpilih, yaitu pada segi empat yang biayanya terendah di antara segi empat lain pada kolom/baris itu. Isiannya sebanyak mungkin yang bisa dilakukan

20 6s-20Linear Programming Gudang Kapasitas Perbedaan baris ABC Pabrik W205890 H15201060 P25101950 Kebutuhan5011040 Perbedaan Kolom Tabel 5.11. Feasible solution mula-mula dari metode VAM 3 5 9 552 Pilihan X PB X PB = 50 Hilangkan baris P P mempunyai perbedaan baris/kolom terbesar dan B mempunyai biaya angkut terkecil

21 6s-21Linear Programming Tabel 5.11. Feasible solution mula-mula dari metode VAM 3 5 5152 Pilihan X WB X WB = 60 Hilangkan kolom B Kebutuhan Gd B menjadi 60 krn telah diisi kapasitas pabrik P=50 (dihilangkan) Gudang Kapasitas Perbedaan baris ABC Pabrik W205890 H15201060 Kebutuhan506040 Perbedaan Kolom B mempunyai perbedaan baris/kolom terbesar dan W mempunyai biaya angkut terkecil

22 6s-22Linear Programming Gudang Kapasitas Perbedaan baris ABC Pabrik W20830 H151060 Kebutuhan5040 Perbedaan Kolom Tabel 5.11. Feasible solution mula-mula dari metode VAM 12 5 52 Pilihan X WC X WC = 30 Hilangkan baris W Kapasitas Pabrik W menjadi 30 krn telah diangkut ke pabrik B=60 (dihilangkan) W mempunyai perbedaan baris/kolom terbesar dan C mempunyai biaya angkut terkecil

23 6s-23Linear Programming Tabel 5.11. Feasible solution mula-mula dari metode VAM 5 Pilihan X HA X HA = 50 Pilihan X HC X HC = 10 H mempunyai perbedaan baris/kolom terbesar dan C mempunyai biaya angkut terkecil Gudang Kapasitas Perbedaan baris ABC Pabrik W H151060 Kebutuhan5010 Perbedaan Kolom Kebutuhan gudang C menjadi 10 krn telah diisi pabrik W=30 (dihilangkan)

24 6s-24Linear Programming Matrik hasil alokasi dengan metode VAM Gudang A Gudang B Gudang C Kapasitas Pabrik Pabrik 20 60 5 30 8 90 W Pabrik 50 1520 10 60 H Pabrik 25 50 1019 50 P Kebutuhan Gudang 5011040200 Ke Dari Setelah terisi semua, maka biaya transportasinya yang harus dibayar adalah 60(Rp 5,-) + 30(Rp 8,-) + 50(Rp 15,-) + 50(Rp 15,-) + 10(Rp 10,-) + 50(Rp 10,-) = Rp 1.890,-


Download ppt "6s-1Linear Programming William J. Stevenson Operations Management 8 th edition OPERATIONS RESEARCH."

Presentasi serupa


Iklan oleh Google