Upload presentasi
Presentasi sedang didownload. Silahkan tunggu
Diterbitkan olehAbank Novia Telah diubah "9 tahun yang lalu
1
LOGIKA FUZZY Kelompok Rhio Bagus P 1308010 Ishak Yusuf 1308011
Sistem Berbasis Pengetahuan LOGIKA FUZZY Kelompok Rhio Bagus P Ishak Yusuf Martinus N Cendra Rossa Rahmat Adhi Chipty Zaimima Sekolah Tinggi Manajemen Industri
2
Logika Fuzzy Pengertian Logika Fuzzy
Logika fuzzy adalah suatu cara yang tepat untuk memetakan suatu ruang input kedalam suatu ruang output Fuzzy Set pertama kali diperkenalkan oleh Prof. Lotfi Zadeh pada tahun 1965, orang Iran yang menjadi guru besar di University of California at Berkeley dalam papernya yang monumental “Fuzzy Set”. Ide dasar fuzzy set yang meliputi inclusion, union, intersection, complement, relation dan convexity
3
Contoh Pemetaan Logika Fuzzy
Manajer pergudangan mengatakan pada manajer produksi seberapa banyak persediaan barang pada akhir minggu ini, kemudian manajer produksi akan menetapkan jumlah barang yang harus diproduksi esok hari
4
Alasan Memilih Logika Fuzzy dalam penerapan diberbagai bidang
1. Konsep logika fuzzy mudah dimengerti. Konsep matematis yang mendasari penalaran fuzzy sangat sederhana dan mudah dimengerti 2. Logika fuzzy sangat fleksibel dan didasarkan pada bahasa alami 3. Logika fuzzy mampu memodelkan fungsi-fungsi nonlinear yang sangat kompleks 4. Logika fuzzy memiliki toleransi terhadap data-data yang tidak tepat 5. Logika fuzzy dapat membangun dan mengaplikasikan pengalaman-pengalaman para pakar secara langsung tanpa harus melalui proses pelatihan 6. Logika fuzzy dapat bekerja sama dengan teknik-teknik kendali secara konvensional
5
HIMPUNAN FUZZY Himpunan Fuzzy Crisp Set
Crisp Set adalah Himpunan yang membedakan anggota dan non anggotanya dengan batasan yang jelas HIMPUNAN FUZZY Fuzzy Set Fuzzy set merupakan dasar dari fuzzy logic. Suatu fuzzy set di dalam Universe (semesta) U didefinisikan sebagai suatu fungsi keanggotaan yang memetakan setiap objek di U menjadi suatu nilai real dalam interval [0,1].
6
Contoh Himpunan Fuzzy 1. Crisp Set Nilai keanggotan suatu item x dalam suatu himpunan A yang sering ditulis dengan μA[x]. memiliki2 kemungkinan yaitu : - Satu(1) yang berarti bahwa suatu item menjadi anggota dalam suatu himpunan - Nol(0) yang berarti bahwa suatu item tidak menjadi anggota dalam suatu himpunan Misalnya Jika diketahui: S = [1, 2, 3, 4, 5, 6] adalah semesta pembicaraan A = [1, 2, 3] B = [3, 4, 5] Maka dapat dikatakan: - Nilai keanggotaan 2 pada himpunan A, μA [2] = 1, karena 2 є A - Nilai keanggotaan 4 pada himpunan A, μA [4] = 0, karena 4
7
Contoh Himpunan Fuzzy 2. Fuzzy Set Contoh dalam Fuzzy Set : - Misalkan, x = {5, 10, 20, 30, 40, 50, 60, 70, 80} adalah crisp set Usia dalam satuan tahun. - Balita, Dewasa, Muda, dan Tua adalah empat fuzzy set yang merupakan subset dari x.
8
Contoh Himpunan Fuzzy Pada tabel tersebut terdapat 4 buah fuzzy set dengan anggota dan derajat keanggotaannya sebagai berikut: Balita = {} Dewasa = {20, 30, 40, 50, 60, 70, 80} di mana derajat keanggotaannya dinyatakan oleh Dewasa = {0.8, 1, 1, 1, 1, 1, 1} Muda = {5, 10, 20, 30, 40, 50} di mana derajat keanggotaannya dinyatakan oleh muda = {1, 1, 0.8, 0.5, 0.2, 0.1} Tua = {20, 30, 40, 50, 60, 70, 80} di mana derajat keanggotaannya dinyatakan oleh Tua = {0.1, 0.2, 0.4, 0.6, 0.8, 1, 1}
9
Atribut Himpunan Fuzzy
Linguistik Numeris Yaitu penamaan suatu grup yang mewakili suatu keadaan atau kondisi tertentu dengan menggunakan bahasa alami, seperti : MUDA, PAROBAYA, TUA ,dsb Yaitu suatu nilai (angka) yang menunjukan ukuran dari suatu variabel seperti : 40, 25, 30, dsb
10
Variabel Fuzzy Himpunan Fuzzy Semesta Pembicaraan Domain
Komponen Sistem Fuzzy Variabel Fuzzy Merupakan variabel yang hendak dibahas dalam suatu sistem fuzzy seperti umur, temperatur, dsb Himpunan Fuzzy Merupakan suatu grup yang mewakili suatu kondisi atau keadaan tertentu dalam suatu variabel fuzzy Semesta Pembicaraan Merupakan keseluruhan nilai yang diperbolehkan untuk dioperasikan dalam suatu variabel fuzzy Domain Merupakan keseluruhan nilai yang diijinkan dalam semesta pembicaraan dan boleh dioperasikan dalam suatu himpunan fuzzy
11
Fungsi keanggotaan Definisi Fungsi Keanggotaan Fuzzy
Adalah suatu kurva yang menunjukan pemetaan titik-titik input data kedalam nilai keanggotaannya (derajat keanggotaan) yang memiliki interval antara 0 sampai 1. Didalam fuzzy sistems, fungsi keangotaan memainkan peranan yang sangat penting untuk merepresentasikan masalah dan menghasilkan keputusan yang akurat.
12
Fungsi Sigmoid Fungsi Keanggotaan Fungsi Phi Fungsi Segitiga
Macam-Macam Fungsi Keanggotaan Fuzzy Linear Naik Representasi Linear Linear Turun Fungsi Sigmoid Fungsi Keanggotaan Fungsi Phi Fungsi Segitiga Fungsi Trapesium
13
Fungsi Representasi Linier
1. Linear Naik Kenaikan himpunan dimulai pada nilai domain yang memiliki derajat keanggotaan nol [0] bergerak ke kanan menuju nilai domain yang memiliki derajat keanggotaan lebih tinggi. FungsiKeanggotaan : 0; x ≤ a (x-a)/(b–a) ; a ≤ x ≤ b μ[x] = 1; x ≥ b
14
Fungsi Representasi Linier
2. Linear Turun Garis lurus dimulai dari nilai domain dengan derajat keanggotaan tertinggi pada sisi kiri, kemudian bergerak menurun ke nilai domain yang memiliki derajat keanggotaan lebih rendah FungsiKeanggotaan : (x-a)/(b–a) ; a ≤ x ≤ b μ[x] = 0; x ≥ b
15
Fungsi Sigmoid 2. Fungsi Sigmoid Sesuai dengan namanya, fungsi ini berbentuk kurva sigmoidal seperti huruf S. Setiap nilai x (anggota crisp set) dipetakan ke dalam interval [0,1].
16
Fungsi Phi 2. Fungsi Phi Pada fungsi keanggotaan ini, hanya terdapat satu nilai x yang memiliki derajat keanggotaan yang sama dengan 1, yaitu ketika x = c. Nilai-nilai di sekitar c memiliki derajat keanggotaan yang masih mendekati 1.
17
Fungsi Segitiga 2. Fungsi Segitiga Sama seperti fungsi phi, pada fungsi ini juga terdapat hanya satu nilai x yang memiliki derajat keanggotaan sama dengan 1, yaitu ketika x = b. Tetapi, nilai-nilai di sekitar b memiliki derajat keanggotaan yang turun cukup tajam menjauhi 1.
18
Fungsi Trapesium 2. Fungsi Trapesium Berbeda dengan fungsi segitiga, pada fungsi ini terdapat beberapa nilai x yang memiliki derajat keanggotaan sama dengan 1, yaitu ketika b x c. Tetapi derajat keanggotaan untuk a < x < b dan c < x d memiliki karakteristik yang sama dengan fungsi segitiga.
19
Operator Dasar Operasi Himpunan
1. Operator AND Operator ini berhubungan dengan operasi interseksi pada himpunan. α-predikat sebagai hasil operasi dengan operator AND diperoleh mengambil nilai keanggotaan terkecil antarelemen pada himpunan-himpunan yang bersangkutan. μA∩B = min (μA[x], μB[y])
20
Operator Dasar Operasi Himpunan
2. Operator OR Operator ini berhubungandenganperasiunion padahimpunan. α-predikat sebagai hasil operasi dengan operator AND diperoleh mengambil nilai keanggotaan terkecil antar elemen pada himpunan-himpunan yang bersangkutan. μAUB = max(μA[x], μB[y])
21
Operator Dasar Operasi Himpunan
3. Operator NOT Operator ini berhubungan dengan operasi komplemen himpunan. α-predikat sebagai hasil operasi dengan operator AND diperoleh mengambil nilai keanggotaan terkecil antar elemen pada himpunan-himpunan yang bersangkutan μA’= 1-μA[x]
22
Penalaran Monoton IF x is A THEN y is B Transfer Fungsi Y=f((x,A),B)
Metode ini digunakan sebagai dasar untuk teknik implikasi fuzzy Jika dua daerah fuzzy direalisasikan dengan implikasi sederhana sebagai berikut : IF x is A THEN y is B Transfer Fungsi Y=f((x,A),B) Maka sistem fuzzy dapat berjalan tanpa harus melalui komposisi dan dekomposisi fuzzy. Nilai output dapat diestimasi secara langsung dari nilai keanggotaan yang berhubungan dengan antesedennya
23
a. b. Aplikasi fungsi implikasi Min
If X1 is A1 and X2 is A2 Then Y is B A1 X1 X2 Y Aplikasi fungsi implikasi Min Aplikasi fungsi implikasi Dot a. b. Gambar 4. (a) Aplikasi fungsi implikasi menggunakan operator min. (b) Aplikasi fungsi implikasi menggunakan operator dot.
24
Bentuk umum aturan yang digunakan dalam fungsi implikasi adalah :
IF x is A THEN y is B Dengan : x dan y adalah skalar A dan B adalah himpunan fuzzy Proposisi yang mengikuti IF disebut anteseden Proposisi yang mengikutiTHEN disebut konsekuen
25
Min (minimum) Dot (product) Komponen Fungsi Implikasi
fungsi ini akan menskala output himpunan fuzzy fungsi ini akan memoong output himpunan fuzzy
26
Metode Inferensi Fuzzy
Yaitu melakukan penalaran menggunakan fuzzy input dan fuzzy rules yang telah ditentukan sehingga menghasilkan fuzzy output Secara sintaks suatu fuzzy rule (aturan fuzzy) dituliskan sebagai berikut : IF antecendent THEN consequent
27
Metode Aturan Inferensi Fuzzy
Metode Inferensi Fuzzy MetodeTsukamoto Metode Aturan Inferensi Fuzzy Metode Mamdani Metode Sugeno
28
1. MetodeTsukamoto Metode Inferensi Fuzzy
Setiap konsekuen pada aturan yang berbentuk IF-THEN harus direpresentasikan dengan suatu himpunan fuzzy dengan fungsi keanggotaan yang monoton. Sebagai hasilnya output hasi linferensi dari tiap-tiap aturan diberikan secara tegas berdasarkan α-predikat. Hasil akhirnya diperoleh dengan menggunakan rata-rata terbobot.
29
2. Metode Mamdani Pembentukan himpunan fuzzy Aplikasi Fungsi Implikasi
Metode Inferensi Fuzzy 2. Metode Mamdani Sering dikenal dengan nama Metode Max-Min. Metode ini diperkenal kan oleh Ebrahim Mamdani pada tahun 1975 Pembentukan himpunan fuzzy Aplikasi Fungsi Implikasi Tahapan Mendapatkan Output Metode Centroid Komposisi Aturan Metode Bisektor Metode Mean of Maximum Penegasan (Defuzzy) Metode Largest of Maximum Metode Smallest of Maximum
30
Metode Inferensi Fuzzy
3. Metode Sugeno Penalaran ini hampir sama dengan penalaran Mamdani, hanya saja output (konsekuen) sistem tidak berupa himpunan fuzzy melainkan berupa konstanta atau persamaan linear. a. Model Fuzzy Sugeno Orde-Nol IF (X1 is A1) - (X2 is A2) - (X3 is A3) - …. - (XNis AN) THEN z = k Dengan : Ai adalah himpunan fuzzy ke-I sebagai anteseden k adalah konstanta (tegas) sebagai konsekuen b. Model Fuzzy Sugeno Orde-Satu IF (X1 is A1) - …. - (XNis AN) THEN z = p1* x1 + …+ pN* XN + q Dengan : Ai adalah himpunan fuzzy ke-I sebagai anteseden pi adalah suatu konstanta ke-I q merupakan konstanta dalam konsekuen
31
Database Fuzzy Database Fuzzy Sebagian besar basis data standar diklasifikasikan berdasarkan bagaimana data tersebut dipandang oleh user dan menggunakan query untuk mencari data yang diinginkan. Namun terkadang dibutuhkan suatu data yang bersifat ambiguous, maka digunakan basis data fuzzy. Salah satu diantaranya adalah model Tahani. Basisdata fuzzy model Tahani masih tetap menggunakan relasi standar, hanya saja model ini menggunakan teori himpunan fuzzy untuk mendapatkan informasi pada query-nya.
32
Akhirnya SELESAI juga ffffuuuuhhhhhhhh
Presentasi serupa
© 2024 SlidePlayer.info Inc.
All rights reserved.