Upload presentasi
Presentasi sedang didownload. Silahkan tunggu
1
Fuzzy Logic Control
2
Sistem Kendali Kendali = pengukuran, penggerak (aktuator) dan prosesor
Video Pendulum Terbalik
3
Produk yg mendasarkan pada embedded control
4
Embedded control di sekitar kita
5
Inverted Pendulum
7
Siklus Desain Sistem Kendali
Pemilihan sensor & aktuator Pemodelan dinamik & simulasi open-loop Desain pengen-dali Simulasi closed-loop Implemen tasi real-time pengen- dali Hardware-in-the-loop simulation & rapid prototyping Uji eksperi men pd sistem fisik
8
CONVENTIONAL CONTROL Open-loop control is ‘blind’ to actual output
Closed-loop control takes account of actual output and compares this to desired output Measurement Desired Output + - Process Dynamics Controller/ Amplifier Output Input
9
Digital Control System Configuration
10
Fuzzy Control Fuzzy control provides a formal methodology for representing, manipulating, and implementing a human’s heuristic knowledge about how to control a system.
11
Fuzzy Systems Fuzzifier Inference Engine Defuzzifier Fuzzy
Input Fuzzifier Inference Engine Defuzzifier Output Fuzzy Knowledge base
12
Fuzzy Control Systems Plant Input Fuzzifier Inference Engine
Defuzzifier Plant Output Fuzzy Knowledge base
13
Basic configuration of fuzzy logic control system
14
Block diagram for a fuzzy inference system
15
Block diagram for a fuzzy inference system
16
The structure of a FKBC
17
Three fuzzy partition terms: N(Negative), Z(Zero), and P(Positive)
18
Rule Base Construction
Intuitive Method Method based Operator (Expert) Experience Response Ideal Method
19
Fuzzy decision rule justification by using step response
20
DML Rule Prototype with Three Fuzzy Set Term
(negative, zero, positive)
21
Rule Justification with Three Fuzzy Set Terms
22
Configuration Procedure and DML Consequence
23
Masukan kendali setelah tahap defuzzifikasi
(Masukan kendali C1: Metoda maksimum rata-rata Masukan kendali C2: Metoda pusat area)
24
Various defuzzification schemes for obtaining a crisp output.
25
Fuzzy Partition using Seven Terms
26
Fuzzy Rules with 7 Terms {NB, NM, NS, ZE, PS, PM, PB}
27
Tabel Justifikasi kaidah dengan tujuh subset fuzzy
28
The rule base of a PI-like FKBC in tabular form:
the five groups of rule
29
The Mamdani fuzzy inference system using min and max for T-norm
And T-conorm operators, respectively.
Presentasi serupa
© 2024 SlidePlayer.info Inc.
All rights reserved.