Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

RANGKAIAN LOGIKA KOMBINASIONAL

Presentasi serupa


Presentasi berjudul: "RANGKAIAN LOGIKA KOMBINASIONAL"— Transcript presentasi:

1 RANGKAIAN LOGIKA KOMBINASIONAL
Pertemuan 8 & 9 Dosen : I Made Astawa

2 RANGKAIAN LOGIKA KOMBINASIONAL
PENDAHULUAN Suatu rangkaian diklasifikasikan sebagai kombinasional jika memiliki sifat yaitu keluarannya ditentukan hanya oleh masukkan eksternal saja. Suatu rangkaian diklasifikasikan sequential jika ia memiliki sifat keluarannya ditentukan tidak hanya oleh masukkan eksternal tetapi juga oleh kondisi sebelumnya.

3 PROSEDUR PERANCANGAN a. Pokok permasalahan sudah ditentukan yaitu jumlah input yang dibutuhkan serta jumlah output yang tertentu. b. Susun kedalam tabel kebenaran (Truth Table). Kondisi don’t care dapat diikut sertakan apabila tidak mempengaruhi output. Sederhanakan fungsi output dengan K-Map atau Metode Tabulasi Gambar Rangkain logikanya

4 DECODER Decoder n to 2n Decoder adalah rangkaian kombinasi yang akan
memilih salah satu keluaran sesuai dengan konfigurasi input. Decoder memiliki n input dan 2n output. Blok Diagram Decoder. Decoder n to 2n IO I1 In YO Y1 Y(2n-1)

5 DECODER Untuk Decoder 2 to 4 IO Decoder n to 2n YO Y1 Y2 I1 Y3

6 DECODER IO I1 YO Y1 Y2 Y3 O O O 1 1 O 1 1 1 O O O O 1 O O O O 1 O
Tabel Kebenaran Untuk Decoder 2 to 4 IO I1 YO Y Y Y3 O O O O O O O O O O O O O O O O

7 DECODER 2 To 4 I1 I0 Y0 Y1 Y2 Y3

8 Decoder Examples 1-to-2-Line Decoder 2-to-4-Line Decoder
Note that the 2-4-line made up of 2 1-to line decoders and 4 AND gates. A A A D D D D 1 1 2 3 A 1 1 D A A 1 1 1 1 1 1 1 1 D A A 1 1 (a) D A A 2 1 D A A 3 1 (b)

9 Decoder Expansion - Example 1

10 Decoder with Enable In general, attach m-enabling circuits to the outputs See truth table below for function Note use of X’s to denote both 0 and 1 Combination containing two X’s represent four binary combinations Alternatively, can be viewed as distributing value of signal EN to 1 of 4 outputs In this case, called a demultiplexer

11 HALF ADDER ( HA ) HA Tabel kebenaran Simbol Half Adder Dimana : A B
I N P U T O U T P U T A B S (Sum) C (Carry) 1 Dimana : A B C S A S HA + B C

12 HALF ADDER ( HA ) B’ B A’ 1 A 1 B’ B A’ A 1 Persamaan output Untuk Sum
S = AB’ + A’B = A  B Untuk Carry C = AB B’ B A’ 1 A 1 B’ B A’ A 1

13 Beberapa macam implementasi dari Half Adder:
S = (x + y)(x’ + y’) C = x y S = (C + x’ y’)’ C = x y Rangkaian Logika nya Lihat di Papan Tulis ! S = (x + y)(x’ + y’) C = (x’ + y’)’

14 Implementations: Half-Adder
The most common half adder implementation is: A NAND only implementation is: X Y C S Y X C S × = Å X Y C S ) ( C Y X S × = +

15 Full-Adder A full adder is similar to a half adder, but includes a carry-in bit from lower stages. Like the half-adder, it computes a sum bit, S and a carry bit, C. For a carry-in (Z) of , it is the same as the half-adder: For a carry- in (Z) of 1: Z X 1 + Y + 0 + 1 C S 0 1 1 0 Z 1 X + Y + 0 + 1 C S 0 1 1 0

16 Full-Adder Simbol Full Adder F A A B Cin S Co Co S +

17 Logic Optimization: Full-Adder
X Y Z C S 1 Full-Adder Truth Table: Full-Adder K-Map: S Y C Y 1 1 1 1 3 2 1 3 2 X 1 1 X 1 1 1 4 5 7 6 4 5 7 6 Z Z

18 Equations: Full-Adder
From the K-Map, we get: The S function is the three-bit XOR function (Odd Function): The Carry bit C is 1 if both X and Y are 1 (the sum is 2), or if the sum is 1 and a carry-in (Z) occurs. Thus C can be re-written as: The term X·Y is carry generate. The term XY is carry propagate. Z Y X C S + = Z Y X S Å = Z ) Y X ( C Å + =

19 Full Adder Ai Bi Ci Ci+1 Gi Pi Si Full Adder Schematic
Here X, Y, and Z, and C (from the previous pages) are A, B, Ci and Co, respectively. Also, G = generate and P = propagate. Note: This is really a combination of a 3-bit odd function (for S)) and Carry logic (for Co): (G = Generate) OR (P =Propagate AND Ci = Carry In) Co = G + P · Ci Ai Bi Ci Ci+1 Gi Pi Si

20 Full Adder dgn 2 buah HA Atau HA Cin A B S Co

21 FULL ADDER DGN DECODER Contoh. Implementasikan suatu Full Adder dengan memakai Decoder dan 2 gerbang OR Jawab : Sum = A  B  Cin = Σ 1,2,4,7 Carry out = (A  B) Cin + AB = Σ 3,5,6,7

22 FULL ADDER DGN DECODER Gambar Rangkaian Logika Cin Decoder A 3 to 8 B
Y0 Cin Y1 Sum Y2 Y3 Decoder 3 to 8 A Y4 Y5 B Y6 Carry out Y7

23 4-bit Ripple-Carry Binary Adder
A four-bit Ripple Carry Adder made from four 1-bit Full Adders:

24 2’s Complement Adder/Subtractor
Subtraction can be done by addition of the 2's Complement. 1. Complement each bit (1's Complement.) 2. Add 1 to the result. The circuit shown computes A + B and A – B: For S = 1, subtract, the 2’s complement of B is formed by using XORs to form the 1’s comp and adding the 1 applied to C0. For S = 0, add, B is passed through unchanged

25 Code Conversion Konversi 8421BCD ke Excess-3

26

27

28 A B C D W X Y Z

29

30 LATIHAN MERANCANG DECODER
Rancang 8421BCD to seven segment ? Catatan : Seven Segment. a f b g e c d


Download ppt "RANGKAIAN LOGIKA KOMBINASIONAL"

Presentasi serupa


Iklan oleh Google