Upload presentasi
Presentasi sedang didownload. Silahkan tunggu
Diterbitkan olehAmie Fahmy Telah diubah "9 tahun yang lalu
1
MANAJEMEN KESUBURAN TANAH Smno.jursntnhfpub.Sept2012
Bahan kajian pada MK. MANAJEMEN KESUBURAN TANAH \ PRINSIP-PRINSIP MANAJEMEN KESUBURAN TANAH Diabstraksikan Oleh: Smno.jursntnhfpub.Sept2012
2
Diunduh dari: http://id.wikipedia.org/wiki/Kesuburan_tanah....9/9/2012
KESUBURAN TANAH Kesuburan Tanah adalah kemampuan suatu tanah untuk menghasilkan produk tanaman yang diinginkan, pada lingkungan tempat tanah itu berada. Produk tanaman berupa: buah, biji, daun, bunga, umbi, getah, eksudat, akar, trubus, batang, biomassa, naungan, penampilan dsb. Tanah memiliki kesuburan yang berbeda-beda tergantung sejumlah faktor pembentuk tanah yang merajai di lokasi tersebut, yaitu: Bahan induk, Iklim, Relief, Organisme, atau Waktu. Tanah merupakan fokus utama dalam pembahasan ilmu kesuburan tanah, sedangkan kinerja tanaman merupakan indikator utama mutu kesuburan tanah. Diunduh dari:
3
CARA MENJAGA KESUBURAN TANAH
Untuk menjaga kesuburan tanah bisa dilakukan dengan cara sebagai berikut : Gunakan jerami. Pada tanah sawah, biasanya setelah panen padi kita selalu membuang dan membiarkan jerami ditumpuk di pinggir sawah. Padahal jerami itu bisa kita manfaatkan untuk menyuburkan tanah. Sebarkan jerami tersebut ke lahan dan ratakan. Kemudian taburkan serbuk dolomit ke atas jerami tersebut. Fungsi dolomit untuk membantu mempercepat pelapukan daun jerami dan bisa mengatur tingkat keasaman tanah sehingga tanah bisa lebih matang dan lahan bisa segera ditanami.Setelah sekitar seminggu lahan tersebut bisa langsung dibajak dan jerami yang belum lapuk bisa dibenamkan ke dalam tanah. Lubang resapan Biopori. Pada taman atau halaman rumah bisa kita lakukan metode biopori. Caranya lubangi tanah secara tegak lurus dengan menggunakan pipa besi dengan diameter sekitar cm dan kedalaman tanah sekitar 100 cm. Jarak antar lubang resapan biopori adalah cm. Kebutuhan jumlah lubang resapan biopori yang diperlukan berdasarkan luas tutupan bangunan. Bila tutupan bangunan dengan luas 20 m2 diperlukan lubang resapan biopori sebanyak 3 unit dan setiap tambahan luas tutupan bangunan 7 m2 diperluhan tambahan 1 unit lubang resapan biopori. Dalam pemeliharaannya lubang resapan biopori ini diisi sampah organik secara berkala dan mengambil sampah tersebut setelah menjadi kompos diperkirakan 2-3 bulan setelah terjadi proses pelapukan. Tanaman Crotalaria.Untuk lahan kritis bisa dimanfaatkan untuk ditanami tanaman crotalaria. Akar tanaman crotalaria bisa mengikat nitrogen dan unsur lain yang sangat dibutuhkan tanah untuk menjadi subur. Daun dan batang tanaman crotalaria sangat baik dijadikan pupuk hijau (kompos) karena mengandung unsur-unsur yang sangat dibutuhkan tanah dan tanaman dibanding pupuk hijau dari tanaman lain. Diunduh dari:
4
MENJAGA KESUBURAN TANAH DENGAN CARA METODE VEGETATIF DAN MEKANIK
Upaya yang dapat dilakukan untuk menjaga keseburan tanah sebagai berikut Metode vegetatif dilakukan dengan cara-cara berikut penanaman tanaman secara berjalur tegak lulus terhadap arah aliran(strip cropping). penanaman tanaman secara berjalur sejajar garis kontur (contour strip cropping). penutupan lahan yang memiliki lereng curam dengan tanaman keras (buffering) penanaman tanaman secara permanen untuk melindungi tanah dari tiupan angin (wind breaks). b.metode mekanik yang umum dilakukan sebagai berikut. pengolahan lahan sejajar garis kontur (contour tilage).pengolahan lahan dengan cara ini bertujuan untuk membuat pola rongga-rongga tanah sejajar kontul dan membentuk igir-igir kecil yang dapat memperlambat alilan air dan memperbesar infiltrasi air penterasan lahan miring (terracering).penterasan bertujuan untuk mengurangi panjang lereng dan memperkecil kemiringan lereng sehingga dapat memperlambat alilan air. pembuatan pematang (guludan)dan saluran air sejajar garis kontur.pembuatan pematangan bertujuan untuk menahan alilan air. pembuatan cekdam.pembuatan cekdam bertujuan untuk memperbendung alilan air yang melewati parit-parit sehingga material tanah hasil erosi yang terangkut aliran tertahan dan terendapkan adannya cekdam menyebabkan erosi tanah dapat dikendalikan,lapisan tanah menebal,dan produktivitas tanah meningkat Diunduh dari:
5
Restoring Soil Fertility in Sub-Sahara Africa
PEMULIHAN KESUBURAN TANAH Restoring Soil Fertility in Sub-Sahara Africa Mateete Bekunda, Nteranya Sanginga, Paul L. Woomer. Advances in Agronomy. Volume 108, 2010, Pages 183–236 Conceptual diagram of the soil fertility restoration process and the controlling factors. Diunduh dari: 9/9/2012
6
ISFM: INTEGRATED SOIL FERTILITY MANAGEMENT
ISFM : an approach to sustainable and cost-effective management of soil fertility. ISFM attempts to make the best use of inherent soil nutrient stocks, locally available soil amendments and mineral fertilizers to increase land productivity while maintaining or enhancing soil fertility. ISFM is a shift from traditional fertilizer response trials designed to come up with recommendations for simple production increases. The goal of ISFM is to develop comprehensive solutions that consider such diverse factors as weather, the presence of weeds, pests and diseases, inherent soil characteristics, history of land use and spatial differences in soil fertility. It involves a range of soil fertility enhancing methods, such as improved crop management practices, integration of livestock, measures to control erosion and leaching, and measures to improve soil organic matter maintenance. ISFM strategies include the combined use of soil amendments, organic materials, and mineral fertilizers to replenish soil nutrient pools and improve the efficiency of external inputs. Diunduh dari: /9/2012
7
Key aspects of the ISFM approach include:
INTEGRATED SOIL FERTILITY MANAGEMENT Key aspects of the ISFM approach include: Replenishing soil nutrient pools Maximizing on-farm recycling of nutrients. Reducing nutrient losses to the environment. Improving the efficiency of external inputs ISFM’s basic focus is on sustainability. The framework of sustainability involves 3 essential components: Adequate, affordable food, feed and fiber supplies; A profitable system for the producer; and Responsible safeguards for the environment. Sumber: Diunduh dari: /9/2012
8
Goals of a Sustainable Soil Fertility Management Program
ISFM: INTEGRATED SOIL FERTILITY MANAGEMENT Goals of a Sustainable Soil Fertility Management Program To sustain high crop productivity and crop quality in food and fiber production (not maximum yields, which typically require excessive nutrient inputs to achieve) (a). Crop productivity, crop quality, and the economic viability of a given farming operation 2. To minimize environmental quality and human health risks associated with agricultural production Important steps in minimizing human health risks and on- and off-farm impacts i. Avoid the use of all synthetically compounded materials (e.g., fertilizers and pest control agents, etc.) known to have an associated environmental quality or human health risk ii. Avoid creating non-point source pollution through surface runoff and leaching. Agricultural nutrients can degrade the quality of groundwater or the water in rivers, lakes, wetlands, and estuaries through eutrophication. iii. Prevent soil erosion and sedimentation of waterways. Soil loss reduces production capacity and soil entering waterways may degrade aquatic habitat. iv. Close nutrient cycles as much as possible within the field and farm to reduce energy used and environmental impact of food and fiber production v. Close nutrient cycles at multiple scales (e.g., watershed, regional, and national scales) Diunduh dari: 9/9/2012
9
Soil quality indicators
ISFM: INTEGRATED SOIL FERTILITY MANAGEMENT Soil fertility: The capacity of a soil to provide nutrients required by plants for growth. This capacity to provide nutrients to crop plants is in part influenced by the physical properties of soils and is one component of soil fertility. Desirable soil physical properties and the capacity of the soil to provide nutrients for growing crops are both soil quality indicators. Soil quality indicators Soil accepts, holds, releases, and mineralizes nutrients and other chemical constituents Soil accepts, holds, and releases water to plants, streams, and groundwater Soil promotes good root growth and maintains good biotic habitat for soil organisms Soil resists degradation (e.g., erosion, compaction) Soil maintains good soil structure to provide adequate aeration Good soil structure allows for rapid water infiltration Soil has a moderate pH (~6.0–7.0) at which most essential soil nutrients are available Soil has low salinity levels Soil has low levels of potentially toxic elements (e.g., boron, manganese, and aluminum) Balanced fertility that provides adequate levels of macro- and micronutrients that plants and soil microbes require Diunduh dari: 9/9/2012
10
Components of a Sustainable Soil Fertility Management Program
ISFM: INTEGRATED SOIL FERTILITY MANAGEMENT Components of a Sustainable Soil Fertility Management Program 1. Improve and maintain physical and biological properties of soil (a) Sustainable agricultural practices used to improve and sustain soil physical and biological properties Maintaining or building soil organic matter (SOM) levels through inputs of compost and cover cropping: SOM has a large capacity to hold and release inorganic (cropavailable) nitrogen and other essential nutrients. Organic matter inputs enhance the stability of soil aggregates, increase the porosity and permeability to water and air, and improve the water-holding capacity of soils. Building or maintaining the level of soil carbon provides the energy and nutrients necessary to stimulate the soil biological activity responsible for decomposition, the formation of soil aggregates, and more desirable soil structure. Properly timed tillage: Stimulates the decomposition of SOM by increasing aeration (O2 supply to aerobic microbes), breaking up compacted areas and large soil clods, and exposing a greater surface area of SOM for microbial breakdown. Appropriate tillage also increases water infiltration and good drainage. Irrigation: For irrigation-dependent crops, manage soil moisture between 50% and 100% of field capacity through soil moisture monitoring and moisture retention techniques such as mulching Use of sound crop rotations, soil amending, and fertilizing techniques all serve to improve the quality of agricultural soils, which in turn affects soil quality and crop performance. Diunduh dari: 9/9/2012
11
INTEGRATED SOIL FERTILITY MANAGEMENT
ISFM: INTEGRATED SOIL FERTILITY MANAGEMENT Memperbaiki dan memelihara sifat kimia tanah (a) Benchmarks of optimal soil chemistry Balanced levels of available plant nutrients (see Unit1.11, Reading and Interpreting Soil Test Reports, for more on this subject) Soil pH ~6.0–7.0: At this soil pH the greatest amount of soil nutrients are available to crops Low salinity levels: The accumulation of salts in the soil may result in plant water and salt stress. Diunduh dari: 9/9/2012
12
INTEGRATED SOIL FERTILITY MANAGEMENT
ISFM: INTEGRATED SOIL FERTILITY MANAGEMENT Sustainable agricultural practices used to develop and maintain optimal soil chemical properties Provide a balanced nutrient supply for the crop. As plant growth is related to the availability of the most limiting nutrient, it is essential that we consider the balance (ratios) of soil nutrients available. Yield and quality may be limited if levels of some nutrients are too high while others are too low. Conduct soil analysis with periodic monitoring. Soil analysis provides current quantitative information on the nutrient profile of a given soil. Soil analysis report data should be compared to established optimal benchmarks of soil fertility when developing soil amendment plans to assure adequate but not excessive nutrient applications. Comparing results from multiple years of sampling will show whether you are depleting or accumulating soil nutrients over time, and indicate whether changes in fertility management are needed. Conduct plant tissue testing. In-season plant tissue testing provides current quantitative data on the nutrient profile of growing plants. Such data may be compared with recommended nutrient levels and may be used to determine the need for mid-season supplemental fertilizing. However, be aware that most tissue testing information has been developed for systems using synthetic chemical fertilizers, and sufficiency levels may well differ for organic systems. Diunduh dari: 9/9/2012
13
SOIL FERTILITY MANAGEMENT
Hubungan Tanaman – Tanah dan Lingkungannya Faktor-faktor yang mempengaruhi kesuburan tanah menjadi fokus pengelolaan kesuburan tanah untuk mendapatkan hasil yang optimal Diunduh dari: 10/9/2012
14
SOIL FERTILITY MANAGEMENT
Soil quality is of fundamental importance for agricultural production, and soil fertility management is increasingly becoming a central issue in the decisions on food security, poverty reduction and environment management. For the purpose of safe ecological stewardship and achieving global food security, emphasising soil fertility management is becoming more and more important. The crucial role of soil fertility management for sustainable resource management and food security has been recognised only quite recently. Major plant nutrient input and output from agricultural systems Diunduh dari: /9/2012
15
SOIL FERTILITY MANAGEMENT
Plant nutrient management for improving crop productivity in Nepal Sherchan and K.B. Karki Soil Science Division, Nepal Agricultural Research Council (NARC) Kathmandu, Nepal An integrated nutrient model developed quite some time ago as shown below figure was a successful programme but it has not been popularized or has not been well adopted by large number of farmers. There should be a follow up study to see the impact on soil fertility management and to look on how best we can promote to wider areas. Integrated plant nutrient components in the Nepalese farming system Diunduh dari: /9/2012
16
Penyediaan AIR YANG CUKUP Soil moisture management and conservations
LIMA FAKTOR PENGELOLAAN TANAH Pengendalian GULMA . PERGILIRAN TANAMAN (ROTASI TANAMAN) PENGENDALIAN HAMA & PENYAKIT (INTEGRATED PEST MANAGEMENT) PENYEDIAAN UNSUR HARA INTEGRATED PLANT NUTRIENT MANAGEMENT Penyediaan AIR YANG CUKUP Soil moisture management and conservations
17
DINAMIKA HARA TANAH Mempertahankan jumlah optimum unsur hara hanya dapat terlaksana dengan menciptakan keseimbangan yang baik antara penambahan dan kehilangannya Benefits of Organic Matter Increases soil CEC Stabilizes nutrients Builds soil friability and tilth Reduces soil splash Benefits of Organic Matter Reduces compaction and bulk density Provides a food source for microorganisms Increases activities of earthworms and other soil critters Carbon Sequestration C cycling in agroecosystems has a significant impact at the global scale because agriculture occupies approximately 11% of the land surface area of the earth.
18
Pupuk superfosfat, atau Pupuk lainnya 5. Penambahan kalium tersedia:
POKOK-POKOK PENGELOLAAN KESUBURAN TANAH. 1. Suplai nitrogen dari: Sisa Tanaman Tanaman biasa Pupuk kandang Tanaman legume Hujan & irigasi Pupuk hijau Pupuk nitrogen Kompos 2. Penambahan bahan organik melalui: Sisa tanaman legume dan non legume Pupuk kandang Pupuk hijau 3. Penambahan kapur bila diperlukan Batu kapur kalsit atau dolomit yg biasa dilakukan 4. Penambahan fosfat: Pupuk superfosfat, atau Pupuk lainnya 5. Penambahan kalium tersedia: Pupuk kandang Sisa tanaman Pupuk Kalium 6. Kekurangan belerang diatasi dg: Belerang, gipsum, superfosfat, Amonium sulfat, Senyawa belerangdalam air hujan 7. Penambahan unsur mikro: Sebagai garam terpisah atau campuran
19
MENGATASI KEKURANGAN NITROGEN
Penambahan & Kehilangan N-tersedia Pengikatan Nitrogen Pupuk Buatan Simbiotik Non-Simbiotik Sisa tanaman Pupuk Kandang N-tersedia dlm tanah Atmosfer Bahan Organik Panen Tanaman Hilang Pencucian Hilang Erosi
20
Soil Carbon Equilibrium Input primarily as plant products
MEMPERTAHANKAN BAHAN ORGANIK TANAH Carbon Inputs to Soil Crop residues Cover crops Compost , and Manures Carbon Substrate The majority of C enters the soil in the form of complex organic matter containing highly reduced, polymeric substances. During decomposition, energy is obtained from oxidation of the C-H bonds in the organic material. Soil Carbon Equilibrium Input primarily as plant products Output mediated by activity of decomposers It is common that from 40 to 60% of the C taken up by microorganisms is immediately released as CO2.
21
Fungsi fisiologis Ca dan Mg dalam tanaman Penambahan dan kehilangan
PENTINGNYA Ca & Mg Fungsi fisiologis Ca dan Mg dalam tanaman Penambahan dan kehilangan Sisa tanaman & Pupuk Kandang Pupuk Komersial Mineral Tanah Ca dan Mg tersedia dalam tanah KAPUR PANEN TANAMAN Hilang pencucian Hilang Erosi
22
Fungsi P sangat penting dalam fisiologi tanaman
MEMPERTAHANKAN KETERSEDIAAN FOSFAT. Fungsi P sangat penting dalam fisiologi tanaman Kehilangan & Penambahan P-tersedia Sisa tanaman Pukuk kandang Pukuk komersial Mineral P-tanah Bahan Organik Tanah P-tersedia dalam tanah Terangkut tanaman Hilang Pencucian Hilang Erosi Fiksasi
23
Sisa tanaman & Pupuk Kandang
KETERSEDIAAN KALIUM Tanah mineral umumnya mengandung cukup banyak kalium, kisaran 40 ton setiap hektar lapisan olah tanah. Namun demikian hanya sebagian kecil yangtersedia bagi tanaman Kehilangan & Penambahan Kalium: Sisa tanaman & Pupuk Kandang Pupuk komersial Mineral-K lambat tersedia K-tersedia tanah Terangkut tanaman Kehilangan erosi Kehilangan Fiksasi Kehilangan pencucian
24
In 1 teaspoon of soil there are…
The Soil Food Web In 1 teaspoon of soil there are… 5 or more Earthworms Up to 100 ……………. Arthropods 10 to 20 bacterial feeders and a few fungal feeders ……. Nematodes Several thousand flagellates & amoeba One to several hundred ciliates ……. Protozoa 6-9 ft fungal strands put end to end ………. Fungi 100 million to 1 billion …………. Bacteria What is the Soil Foodweb and why is it so Important? The soil foodweb is the tonnes of beneficial bacteria, fungi, protozoa and nematodes that live in soil or compost whose value has been overlooked, undervalued and misunderstood for decades. Recent discoveries in soil biology show a huge potential to improve current organic, biological and conventional growing and farming and move away from costly synthetic inputs. Diunduh dari: 10/9/2012
25
BOT berpengaruh terhadap:
CADANGAN KARBON TANAH Nonhumic substances—carbohydrates, lipids, proteins Humic substances—humic acid, fulvic acid, humin BOT berpengaruh terhadap: - Hara tanaman - Kesehatan tanah dan tanaman sifat-sifat fisika, kimiawi dan biologis tanah
26
BOT ----- FRAKSI RINGAN
The light fraction (LF) with a density of ~1.6 gm cm-3 is relatively mineral free and consists of partially decomposed plant material, fine roots and microbial biomass with a rapid turnover time. The LF is a source of readily mineralizable C and N, accounts for ~50% of total soil C and declines rapidly under cultivation. Carbon Sequestration and Soil Aggregation in Center-Pivot Irrigated and Dryland Cultivated Farming Systems Jeroen Gillabel, Karolien Denefb, John Brennerc, Roel Merckxd and Keith Paustian SSSAJ. Vol. 71 No. 3, p Diunduh dari: 10/9/2012
27
Long Hai, Xiao Gang Li, Feng Min Li, Dong Rang Suo, Georg Guggenberger
BOT --- FRAKSI BERAT --- The Heavy Fraction The heavy fraction (HF) is organic matter adsorbed onto mineral surfaces and sequestered within organomineral aggregates. The HF is less sensitive to disturbance an chemically more resistant than the LF. Long-term fertilization and manuring effects on physically-separated soil organic matter pools under a wheat–wheat–maize cropping system in an arid region of China Long Hai, Xiao Gang Li, Feng Min Li, Dong Rang Suo, Georg Guggenberger Soil Biology and Biochemistry. Volume 42, Issue 2, February 2010, Pages 253–259. About two thirds of macro OM was actually located within 2–0.05 mm organo-mineral associations or/and aggregates. Diunduh dari: /9/2012
28
Priming effects: Interactions between living and dead organic matter
Bacteria vs. Fungi Bacteria are smaller than fungi and can occupy smaller pores and thus potentially have greater access to material contained within these pores. Bacteria are less disrupted than are fungi by tillage practices commonly used in agriculture. Priming effects: Interactions between living and dead organic matter Yakov Kuzyakov Soil Biology and Biochemistry, Volume 42, Issue 9, September 2010, Pages 1363–1371 PEs (Priming effects) – the interactions between living and dead organic matter – should be incorporated in models of C and N dynamics, and that microbial biomass should regarded not only as a C pool but also as an active driver of C and N turnover. Sequence of processes inducing apparent (aPE) and real (rPE) priming effects: 1. Input of available organics by rhizodeposition (Exudation). 2. Activation of microorganisms (mainly r-strategists) by available organics (Activation). 3. Activation of K-strategists. 4. Production of extracellular enzymes that degrade SOM by K-strategists (Enzyme production). 5. SOM decomposition and production of available organics and mineral nutrients. 6. Uptake of nutrients by roots. The dynamics and sequence of individual processes are described in detail in Blagodatskaya and Kuzyakov (2008). → fluxes; — — → effects; ········ dynamics of apparent priming effects (aPEs) and real priming effects (rPEs). Diunduh dari: /9/2012
29
Soil Fungi Fungi tend to be selected for by plant residues with high C/N ratios.
Fungi have a greater influence on decomposition in no-till systems in which surface residues select for organisms that can withstand low water potentials and obtain nutrients from the underlying soil profile. Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect S. Fontaine, C. Henault, A. Aamor, N. Bdioui, J.M.G. Bloor, V. Maire, B. Mary, S. Revaillot, P.A. Maron. Soil Biology and Biochemistry. Volume 43, Issue 1, January 2011, Pages 86–96 Fungi are the predominant actors of cellulose decomposition and induced PE and they adjust their degradation activity to nutrient availability. The predominant role of fungi can be explained by their ability to grow as mycelium which allows them to explore soil space and mine large reserve of SOM. The bank mechanism adjusting the sequestration of nutrients and carbon in soil organic matter (SOM) to the availability of nutrients in soil solution tested in this study. This mechanism is based on the assumption that microbial degradation of recalcitrant SOM (priming effect) is modulated by the concentration of nutrients in soil solution . When nutrient availability is low (a), for example because the plant uptake of nutrient is high, the microbial mining of SOM could be intense and eventually exceed the formation of new SOM through humification of fresh-C, leading to net destruction of SOM and release of mineral nutrients. In contrast, when soluble nutrients are abundant (b), microbial immobilization of N should increase while mining of SOM should decrease, leading to a greater sequestration of nutrients in SOM. Given that plant demand of mineral nutrients is highly variable and depends on many factors such as plant phenology, soil moisture and light availability, the bank mechanism could help to synchronize the availability of soluble nutrients to plant uptake. Numbers indicate the chronology of events induced by a change in plant uptake of nutrients. Diunduh dari: /9/2012
30
Organic matter decomposition and the soil food web
PENTINGNYA BAHAN ORGANIK TANAH Bagaimana BOT mempengaruhi hubungan Tanah-Tanaman? Decomposed organic matter provides nutrients for plant growth (Mineralization) It determines the soil’s temperature, air ventilation, structure and water management It contains bioregulators which affects plant growth It contains bioregulators, which affects plant growth (enzymes, hormones, etc.) Its carbon and energy content is the soil’s energy battery for future use It determines the soil’s capacity to compensating, regenerating and protecting the environment regenerating and protecting the environment. Organic matter decomposition and the soil food web When plant residues are returned to the soil, various organic compounds undergo decomposition. Decomposition is a biological process that includes the physical breakdown and biochemical transformation of complex organic molecules of dead material into simpler organic and inorganic molecules (Juma, N.G The pedosphere and its dynamics: a systems approach to soil science. Volume 1. Edmonton, Canada, Quality Color Press Inc. 315 pp.) The continual addition of decaying plant residues to the soil surface contributes to the biological activity and the carbon cycling process in the soil. Breakdown of soil organic matter and root growth and decay also contribute to these processes. Carbon cycling is the continuous transformation of organic and inorganic carbon compounds by plants and micro- and macro-organisms between the soil, plants and the atmosphere. Diunduh dari: /9/2012
31
Humus consists of different humic substances:
PENTINGNYA BOT Organic material in the soil is essentially derived from residual plant and animal material, synthesised by microbes and decomposed under influence of temperature, moisture and ambient soil conditions Soil organic matter is extremely important in all soil processes Cultivation can have a significant effect on the organic matter content of the soil In essentially warm and dry areas like Southern Europe, depletion of organic matter can be rapid because the processes of decomposition are accelerated at high temperatures Generally, plant roots are not sufficiently numerous to replace the organic matter that is lost Humic substances retain nutrients available on demand for plants Functions of humus: improved fertilizer efficiency; longlife N - for example, urea performs days longer; improved nutrient uptake, particularly of P and Ca; stimulation of beneficial soil life; provides magnified nutrition for reduced disease, insect and frost impact; salinity management - humates “buffer” plants from excess sodium; organic humates are a catalyst for increasing soil C levels. Humus consists of different humic substances: Fulvic acids: the fraction of humus that is soluble in water under all pH conditions. Their colour is commonly light yellow to yellow-brown. Humic acids: the fraction of humus that is soluble in water, except for conditions more acid than pH 2. Common colours are dark brown to black. Humin: the fraction of humus that is not soluble in water at any pH and that cannot be extracted with a strong base, such as sodium hydroxide (NaOH). Commonly black in colour. The term acid is used to describe humic materials because humus behaves like weak acids. Fulvic and humic acids are complex mixtures of large molecules. Humic acids are larger than fulvic acids. Research suggests that the different substances are differentiated from each other on the basis of their water solubility. Fulvic acids are produced in the earlier stages of humus formation. The relative amounts of humic and fulvic acids in soils vary with soil type and management practices. The humus of forest soils is characterized by a high content of fulvic acids, while the humus of agricultural and grassland areas contains more humic acids. Diunduh dari: /9/2012
32
MANFAAT BOT ➢ Storehouse for nutrients ➢ Source of fertility
➢ Contributes to soil aeration thereby reducing soil compaction ➢ Important ‘building block’ for the soil structure ➢ Aids formation of stable aggregates ➢ Improves infiltration/permability ➢ Increase in storage capacity for water. ➢ Buffer against rapid changes in soil reaction (pH) ➢ Acts as an energy source for soil micro-organisms Organic matter within the soil serves several functions. From a practical agricultural standpoint, it is important for two main reasons: (i) as a “revolving nutrient fund”; and (ii) as an agent to improve soil structure, maintain tilth and minimize erosion. As a revolving nutrient fund, organic matter serves two main functions: As soil organic matter is derived mainly from plant residues, it contains all of the essential plant nutrients. Therefore, accumulated organic matter is a storehouse of plant nutrients. The stable organic fraction (humus) adsorbs and holds nutrients in a plant-available form. Diunduh dari: /9/2012
33
Degradasi: HILANGNYA BOT
During field operations, fresh topsoil becomes exposed and dries rapidly on the surface Organic compounds are released to the atmosphere result from breakdown of soil aggregates bound together by humic materials Unless the organic matter is quickly replenished, the system is in a state of degradation leading eventually to un-sustainability The removal of crop residues in dry ecosystems, which are inherently marginal, can cause such systems to be quickly transformed from a stage of fragility to total exhaustion and depletion Selecting Indicators to Evaluate Soil Quality Zueng-Sang Chen Department of Agricultural Chemistry National Taiwan University, Taipei, 10617, Taiwan ROC, Changes in Soil Organic Matter Content (MT/Ha) Calculated in Taiwan under Different Soil Management Systems with Long-Term Application of Composts or Fertilizers Diunduh dari: /9/2012
34
FAKTOR YG PENGARUHI BOT
Natural factors: ➢ Climate ➢ Soil parent material: acid or alkaline (or even saline) ➢ Land cover and or vegetation type ➢ Topography – slope and aspect Human-induced factors: ➢Land use and farming systems ➢Land management (cultivation) ➢Land degradation Potential environmental effects of corn (Zea mays L.) stover removal with emphasis on soil organic matter and erosion Linda Mann, Virginia Tolbert, Janet Cushman. Agriculture, Ecosystems & Environment. Volume 89, Issue 3, May 2002, Pages 149–166. Simplified conceptual model of interactions and feedbacks between tillage and soil factors affecting soil organic matter content (adapted from Fig. 2 in Paustian et al. (1997)). Diunduh dari: /9/2012
35
Temperature: Moisture:
FAKTOR IKLIM PENGARUHI BOT: Temperature: OM decomposition rapid in warm climates OM Decomposition is slower for cool regions Within zones of uniform moisture and comparable vegetation -- Av total OM increases 2x to 3x for each 10 deg C fall in mean temperature Moisture: Dekomposisi BOT berlangsung cepat di iklim hangat Dekomposisi BOT berlangsung lambat di iklim dingin Under comparable conditions , Av total OM increases as the effective moisture increases. Diunduh dari: /9/2012
36
Sumber: pgsgrow.com/blog/tag/organic-gardening/
SOIL is Alive! This living-life helps with garden health, fertility, decomposition of organic matter, replenishment of nutrients, humus formation, and promotion of root growth, nutrient uptake, and herbicide and pesticide breakdown. Diunduh dari: /9/2012 Bahan organik dalam tanah membantu menyediakan makanan bagi semua organisme dan pelepasan hara. Humus acts like glue that holds all the particles together, and it helps prevent erosion and increases a garden's moisture holding ability. Humus also increases fertility by making nutrients more available to the organic garden plants' roots.
37
Sumber: www.cartage.org.lb/en/themes/sci...ones.htm
Structure of soil, indicating presence of bacteria, inorganic, and organic matter Sumber: Tingginya kesuburan tanah-0tanah virgin selalu berhubungan dengan tingginya kandungan BOT, dan penurunan BOT akibat kultivasi biasanya sejalan dengan penurunan produktivitas.
38
PUPUK - PEMUPUKAN Pupuk merupakan satu pilihan pengelolaan yang banyak dilakukan Kehilangan hara tanah akibat panen tanaman harus diganti Over-fertilization can result in dangerous pollution Teknologi meningkatkan efisiensi pupuk
39
PENGELOLAAN KESUBURAN TANAH
SASARANNYA: Peningkatan hasil produksi Reduce costs/unit production Improve product quality Avoid environmental pollution Memperbaiki kesehatan dan estetika lingkungan
40
TUJUAN PENGELOLAAN KESUBURAN TANAH
Efficient land managers: spend <20% of production costs on fertilizers, expect >50% increase in yields Pupuk tidak menguntungkan kalau : Water is the most limiting factor Other growth hindrances – insects, diseases, acidity, extreme cold Increased yield has less market value than the cost of buying/app of fertilizer
41
TUJUAN PENGELOLAAN KESUBURAN TANAH
Pupuk – biasanya merupakan input produksi pertanian yang sangat menguntungkan Soil fertility problems usually the easiest to solve Soil nutrients typically present in finite amounts, don’t replenish themselves Crops typically contain: (in rank of amount found in the plant) N, K, Ca, P, Mg, S
42
TUJUAN PENGELOLAAN KESUBURAN TANAH
Pemupukan dapat membantu menutupi biaya produksi dengan jalan memaksimumkan hasil Improved fertility = improved yields, improved aesthetic appeal Environmental concerns abound Fertilizer laws viewed as lax by some Farmers may be the primary cause of non-point-source pollution
43
TUJUAN PENGELOLAAN KESUBURAN TANAH
Bahan polutan : Nitrat Percolate through to groundwater Not safe to drink Cause “Blue-baby” syndrome – inhibits oxygenation of blood Becoming common near heavily fertilized fields, feedlots, dairies Fosfat Mencemari perairan permukaan melalui proses runoff Promotes algae growth in rivers/ponds Depletes available oxygen in the water for fish
44
TUJUAN PENGELOLAAN KESUBURAN TANAH
Pemupukan secara tepat dan bijaksana dapat memperbaiki lingkungan: Crops, trees, etc. - remove more CO2, decrease sediment, dust, erosion Plays important role for future of the planet Diunduh dari: /9/2012
45
Large- & Medium-Scale Management
PENGELOLAAN LAHAN Large- & Medium-Scale Management Pengelolaan Sekala Besar Low levels of operational precision, little reliance on sophisticated technology May be most feasible/profitable for some Simple & low-tech Some shy away from high tech for other reasons
46
PENGELOLAAN LAHAN Kerugian Keuntungan
Some parts of field may receive too much/little fertilizer or pesticide Less than optimal yields Inefficient use of fertilizers & pesticides Higher cost of production/unit Environmental pollution due to over application Keuntungan Minimal technological training & instrumentation needed Field operations can be performed w/ standard, readily available, cheaper equipment.
47
PENGELOLAAN LAHAN Pengelolaan sekala medium
Subdivide field into two+ management units Delineation may be based on: Soil types Past management differences Farmer’s observations Ex. High, medium, low N application areas in the field Same equipment/technology needs as for large-scale management farmers
48
Pengelolaan sekala Medium :
PENGELOLAAN LAHAN Pengelolaan sekala Medium : Memperbaiki efisiensi input produksi usahatani Dapat mengurangi aplikasi bahan agrokimia yang berlebihan May do spot treatments/ applications in a field due to field observations Small-Scale Management (Precision Farming) Global Positioning System (GPS) – network of the world satellites , a signal detection system used to locate positions on the ground Diunduh dari: ..
49
PENGELOLAAN LAHAN Precision Farming Soil sample fields on a grid
Data collection points no more than a few feet apart Each sample site mapped using GPS Custom applicators can custom apply fertilizers at variable rates that change constantly as the applicator travels the field – variable rate application, site-specific management, precision farming Precision Farming Diunduh dari: /9/2012
50
PENGELOLAAN LAHAN Precision Farming
Potential to substantially decrease fertilizer/chemical application rates Potential to substantially decrease input costs Does require expensive technology, equipment & extensive technical knowledge Precision Farming Diunduh dari: /9/2012
51
Standard method for determining soil fertility
PENGAMBILAN CONTOH TANAH Standard method for determining soil fertility Use of precision farming to minimize inputs Accuracy of soil sample is key!!!! Precision Farming
52
Kedalaman dan Banyaknya Sampel Tanah
PENGAMBILAN CONTOH TANAH Kedalaman dan Banyaknya Sampel Tanah Sampling depth – 7-12” for typical soil analysis Shallower depth for no-till/sod crops – acid-layer can form at very top of soil structure For accurate N analysis – 24-36” depth For composite sampling – fewer # samples decreases accuracy of analysis
53
Frekuenasi Sampling Tanah: Waktu dan Lokasi
PENGAMBILAN CONTOH TANAH Frekuenasi Sampling Tanah: Waktu dan Lokasi New land, land new to you – yearly for 1st few yrs until you understand the soil Every 2-3 yrs, unless concern for environmental problems Analysis – determines which nutrients can be made available in the soil & which will need to be supplied Samples often pulled in fall to provide enough time for analysis/amendments Diunduh dari: /9/2012
54
PENGAMBILAN CONTOH TANAH
Spring sampling is more accurate, but conditions may not be favorable, or not sufficient time Sampling row crops problematic Can hit a fertilizer zone Hard to get enough representative samples Diunduh dari: /9/2012
55
PENGAMBILAN CONTOH TANAH
Keseragaman area sampling Perbedaan karakteristik tanah dan perlakuan masa lalu Memperhatikan: Keseragaman produktivitas Topography Soil texture Soil structure Drainage Depth/color topsoil Past management Diunduh dari: /9/2012
56
Evaluasi kemasaman tanah
UJI TANAH = Soil Tests Law of the Minimum: growth of the plant is limited most by the essential plant nutrient present in the least relative amount (first-limiting) Evaluasi kemasaman tanah pH diukur dnegan elektroda dan larutan Kebutuhan kapur – amount of lime required to achieve desired pH Reported as buffer pH HUKUM MINIMUM
57
UJI TANAH untuk NITROEGEN
UJI TANAH = Soil Tests UJI TANAH untuk NITROEGEN Tidak ada uji yang baik untuk N-tersedia dalam tanah Most states provide N recommendations based on yrs of field plots trials on various crops, soils, management, fertilizers Rekomendasi N harus memperhatikan: Tanaman sebelumnya Estimates N carryover N needed to decompose residues Proyeksi/ sasaran hasil Iklim
58
Some will discourage N testing
UJI TANAH = Soil Tests Uji N-tanah di laboratorium sangat akurat, tetapi sulit interpretasinya Some will discourage N testing Perilaku reaksi N dalam tanah “unpredictable “– sehingga analisis laboratorium tidak sahih Pencucian N Denitrifikasi Mineralisasi N-organik Pengaruh Iklim Diunduh dari: /9/2012
59
Rekomendasi pemupukan N
UJI TANAH = Soil Tests Rekomendasi N berdasarkan pada sasaran hasil, bukan berdasar pada cadangan N dalam tanah Corn Rule – ……. kg N/ha of yield goal How much N should be recommended for corn following corn, expected yield 2.5 ton/ha? How much N should be recommended for corn following soybeans, expected yield 5 ton/ha? Rekomendasi pemupukan N Diunduh dari: /9/2012
60
UJI TANAH = Soil Tests UJI TANAH untuk P dan K
Widely used to predict probability of crop response to fertilization Survei Tanah: 47% soil tested medium to low for P 43% soil tested medium to low for K P & K soil levels declining in many states Uji Tanah untuk P Quite reliable – soil P is very stable from yr to yr Kebanyakan P dalam tanah tidak tersedia bagi tanaman Uji tanah mengekstraks dan mengukur apa yang sebenarnya tersedia Diunduh dari: /9/2012
61
UJI TANAH untuk K UJI TANAH = Soil Tests
Uji tanah untuk K-tukar dan K-larut Perdebatan prosedur uji tanah, mana yang paling akurat: Some estimate upper threshold needs ~ #/ac (above which no response to K fertilizer) Others #/ac on clay soils (calculated based on soil CEC – higher CEC = decreased available K) Some experimentation w/ soil probes checking K, NO3, PO4, SO4
62
Uji Tanah untuk Ca dan Mg
UJI TANAH = Soil Tests Uji Tanah untuk Ca dan Mg Related to need for lime Well-limed soils rarely Ca & Mg deficient Mg deficiency more common than Ca Coarse-textured or acidic soils Many yrs using non-Mg containing lime Uji tanah untuk Mg : Mg-tyukar dalam tanah % kejenuhan Mg pada koloid tanah Nisbah K:Mg
63
Uji Tanah untuk S dan B Rekomendasi kandungan Boron
UJI TANAH = Soil Tests Uji Tanah untuk S dan B S testing inaccurate – acts much like N Can test – but must take variability into account Rekomendasi kandungan Boron <1.0 ppm – deficient for plant growth 1-5.0 ppm – adequate >5.0 ppm – excess/toxicity risks
64
UJI TANAH untuk UNSUR MIKRO
UJI TANAH = Soil Tests UJI TANAH untuk UNSUR MIKRO Difficult to develop accurate tests due to relatively infrequent need for field supplementation Can be done, if requested for a specific need Adds expense to soil analysis
65
Bagaimana Uji Tanah yang Baik?
UJI TANAH = Soil Tests Bagaimana Uji Tanah yang Baik? Analyses recalibrated regularly based on field trial studies Validity of analysis related directly to accuracy of sample, information provided to the lab. Soil analyses generally very valid for: P, K, soluble salts, pH, lime Other tests should only be used on as-needed basis Extra cost Less accurate
66
Evaluasi Ketersediaan hara dalam tanah:
ANALISIS TANAMAN Evaluasi Ketersediaan hara dalam tanah: Analisis Tanaman vs. Uji Tanah Plant most accurate report on what nutrients are actually available Plant analysis leaves little to no room for amendments to the soil When deficiencies are acknowledged, yield usually already affected Diunduh dari: /9/2012
67
ANALISIS TANAMAN Kapan Analisis Tanaman diperlukan?
Treatment of an easily-corrected deficiency Long-growing crops: turf, tree fruits, forests, sugar cane Uji Cepat di Lapangan Can test for N, K status in plants Collect ~20 leaves for sample Must be random from different locations Don’t select only affected-looking leaves Chop/mix, squeeze sap & test Most effective for greenhouse/nursery growers Amendments can easily be made High possible economic losses
68
Analisis Total Tanaman
ANALISIS TANAMAN Analisis Total Tanaman Done in a lab Should be tested by stage of development Indicate part of plant sampled & be consistent Dry to prevent spoilage (confounds results) Wrap in paper and mail w/ complete report – complete history, information critical Random sampling key
69
INTERPRETASI ANALISIS TANAMAN
Interpreting Plant Analyses Accurate interpretation difficult if not all critical information provided Element classified as deficient if below threshold nutrient levels Levels change through season, stage of development, etc. Some general disagreement from scientists on what threshold levels are INTERPRETASI ANALISIS TANAMAN
70
Kisaran Kritis Kadar Hara (CNR)
ANALISIS TANAMAN Kisaran Kritis Kadar Hara (CNR) CNR – ranges at which nutrients are: Visually deficient Hidden deficient Slightly deficient Sufficient supply Toxic
71
Gejala Defisirensi Hara
ANALISIS TANAMAN Chlorosis – yellowish to whitish appearance to foliage, stem Necrosis – dead tissue Causes: disease, insect damage, salt accumulation, stress, nutrient deficiencies Some visual symptoms same for many diseases/deficiencies Gejala Defisirensi Hara
72
Nutrients are relocated in the plant by two pathways
ANALISIS TANAMAN Nutrients are relocated in the plant by two pathways Xylem – water-carrying vessels All nutrients can pass through Phloem – sugar-carrying vessels Not all nutrients can relocate Mobile nutrients – travel freely Immobile nutrients – can’t be moved from their location in the plant Mobile nutrient deficiencies tend to occur on older leaves – plant sacrifices old for new tissue
73
Immobile nutrient deficiencies – symptoms on shoot/root tips, fruits
ANALISIS TANAMAN Immobile nutrient deficiencies – symptoms on shoot/root tips, fruits Can’t be treated from the soil w/ fertilizer – plant can’t send Ca (ex) to the ripening fruit Mobile nutrients: N, P, K, Cl, Mg, S Immobile nutrients: Cu, Mn, Zn, Fe, Mo, S Very immobile nutrients: B, Ca MOBILITAS HARA
74
Berbagai laboratorium/pakar membuat rekomendasi yang berbeda-beda.
REKOMENDASI PUPUK Berbagai laboratorium/pakar membuat rekomendasi yang berbeda-beda. Traditional philosophies being challenged: P application rates Yield-based N recommendations Diunduh dari: /9/2012
75
Membuat Rekomendasi Pemupukan
REKOMENDASI PUPUK Membuat Rekomendasi Pemupukan Must have sufficient plot data to correlate yields & nutrient needs Once a general amount of fertilizer is known: Subtract for manure application Subtract for residual P or N Add/subtract for N, P, S because of soil organic matter levels – can count on them supplying some
76
Laporan Uji Tanah Labs usually full-service See soil test report
REKOMENDASI PUPUK Laporan Uji Tanah Labs usually full-service Soil, plant, manure, irrigation water testing See soil test report Diunduh dari: /9/2012
77
KUALITAS PUPUK GRADE PUPUK – amounts of N, P, K in a fertilizer required by law to be listed Also required: Weight of material, manufacturer Optional: Filler composition, acidity in soil potential Calculating fertilizer N, P, K amounts
78
Acidity & Basicity of Fertilizers
KUALITAS PUPUK Amounts listed as: elemental N, phosphate, potash (not direct indication of elemental P, K supplied) Acidity & Basicity of Fertilizers Most affect soil acidity in some regard Superphosphate, Triplesuperphosphate, Potash – neutral MAP, DAP, all N fertilizers – acidifiers
79
Kelarutan dan Mobilitas dalam Tanah
KUALITAS PUPUK Fungsi-fungsi: Elemental charge Tendency to form insoluble compounds Adsorption ability Soil texture Water movement Concentration of other ions Kelarutan dan Mobilitas dalam Tanah Diunduh dari: /9/2012
80
KUALITAS PUPUK Contoh-contoh P may only move a few cm
Must be place in/near root zone N can move w/ extent of water movement Diunduh dari: /9/2012
81
Menghitung Campuran Pupuk
PERHITUNGAN PUPUK Calculating Fertilizer Mixtures Mixing ammonium nitrate & TSP to get 1 ton mixture of How much of each do we need? How about if we needed a fertilizer for a customer? What might we use for each ingredient? How much of each would we need? Menghitung Campuran Pupuk
82
Weights of Fertilizer to Apply
PERHITUNGAN PUPUK Weights of Fertilizer to Apply Planting corn expected to yield 125 bu/ac How much N do we need? Soil analysis recommended 88#/ac phosphate How much ammonium nitrate & TSP do we need? What is our final application rate? DOSIS PUPUK
83
Calculations Involving Liquid Fertilizers
PERHITUNGAN PUPUK Calculations Involving Liquid Fertilizers Use dry fertilizer calculation if sold by weight If sold by volume, usually applied by volume DOSIS PUPUK CAIR
84
Advantages: Starter (Pop-Up) Fertilizers Cold soils
APLIKASI PUPUK Starter (Pop-Up) Fertilizers Addition of fertilizer w/ the seed during planting, dribbled in a strip near the see, banding w/in 2” of seed Most beneficial for P, K – some for N, but not as necessary Advantages: Cold soils Low nutrient levels in the root zone Fast-growing plants Disadvantages: Slows planting Can burn seedling, if placed too close
85
APLIKASI PUPUK Broadcast Application Aplikasi pupuk seragam pada seluruh permukaan lahan Ditabur di permukaan tanah atau dibenamkan Somewhat less efficiency of fertilizer Especially when not incorporated quickly Why?
86
Alasan Aplikasi pupuk secara disebar:
Salah satu metode aplikasi pupuk yang snagat praktis. Tanah-tanah yang kesuburannya rendah memerlukan banyak pupuk Easy, cheap, personal preference Flexible – split applications, ability to add after crop is growing
87
Pupuk dibenamkan secara mendalam
APLIKASI PUPUK Deep Banding Application of strips into the soil Either between/side of row, where the seed may be planted Typically 4-12” depth Knifing in anhydrous most common Gas able to dissolve in soil water before it escapes Losses can be high if dry, sandy Pupuk dibenamkan secara mendalam
88
APLIKASI PUPUK Deep Banding Kerugian: Strong equipment needed
High fuel costs Danger of dealing w/ anhydrous Keuntungan: High yield response potential Puts fertilizer where most roots are, very efficient use
89
APLIKASI PUPUK Split Application Divided total fertilizer rates delivered in 2+ applications Reasons to split applications If large applications are needed – increase efficiency of nutrient use Soil conditions dictate – risk for high nutrient losses Control vegetative growth in early stages
90
APLIKASI PUPUK SPLIT APPLICATION Keuntungan: Kerugian:
Increased efficiency of N utilization Provide a “boost” to the plant during growth Kerugian: Extra pass through field Not effective for P, K because of immobility
91
Side-Dressing or Topdressing
APLIKASI PUPUK Side-Dressing or Topdressing Side-dressing – surface or shallow band application put on after crop is growing Broadcast, surface stripped, sprayed, knifed Prinsip yang harus diperhatikan: Mengurangi kehilangan N Ditambahkan dalam larikan untuk membantu infiltrasi air Tidak efektif untuk P dan K
92
APLIKASI PUPUK Point Injector Application
– Penempatan pupuk P dan K ke dalam tanah di zone perakaran tanpa mengganggu / merusak akar tanaman Used more in small plots, gardens Push stick, rod into soil, fill w/ fertilizer, cover Effective for: fruit trees, grapes, shrubs, etc. Not common in field use
93
Aplikasi pupuk bersama dengan air irigasi
Dapat mengaplikaiskan sejumlah besar hara Sangat efektif untuk N Some see 30-50% more efficient use of N Cut of 50% in N rates w/ same/better yield Harus hati-hati terhadap potensial gangguan garam FERTIGATION
94
APLIKASI PUPUK FERTIGATION
Aplikasi dapat dilakukan pada saat kebutuhan hara snagat tinggi Aplikasinya mudah dan cepat Most effective on soils with poor nutrient retention & for mobile nutrients Chemigation also possible.. ? FERTIGATION
95
Aplikasi Daun Foliar Application
APLIKASI PUPUK Aplikasi Daun Foliar Application – Daun dibasahi untuk memaksimumkan penyerapan hara melalui stomata dan epidermis daun Feasible for: N supplementation, pesticides, micronutrients, etc. Guidelines: Only suited for applications of small amount (can burn plant) Decreased rates can be used
96
APLIKASI PUPUK Aplikasi Daun
Need wetting agent to help the spray to distribute evenly across surface Helpful when root conditions restrict nutrient uptake Quick response/remedy to deficiency (also short residual) Angin harus sepoi-poi, lembab nisbi udara >70%, temperatur <85° F
97
Memupuk padi dan tanah-tanah tergenang lainnya
APLIKASI PUPUK Memupuk padi dan tanah-tanah tergenang lainnya Paddy rice – production on water covered soils Water 2-6” deep One of very few crops that tolerate anaerobic conditions Sulit memukup karena risiko kehilangan hara sangat besar
98
Memupuk padi dan tanah-tanah tergenang lainnya
EFISIENSI PUPUK Sangat fokus pada peningkatan efisiensi pemupukan Research Real-time sensors in soils that immediately detect nutrient deficiency Transgenic plants Efisiensi Pupuk: Fraction / percentage of added fertilizer that is actually used by the plant Memupuk padi dan tanah-tanah tergenang lainnya
99
EFISIENSI PUPUK Efisiensi Pupuk :
30-70% for N 5-30% for P 50-80% for K Maximum profits rarely at maximum yields Last amounts of fertilizer to produce more yield cost more than yield increase Management also key Penerapan BMP dapat meningkatkan: Encourage environmental protection Couple w/ agronomic success Increase economic yields, leading to sustainable ag
100
EFISIENSI PUPUK SISTEM AKAR TANAMAN
Some plants better scavengers than others Absorption greatly affected by fertilizer distribution Smaller root system = shorter growing season = >dependence on fertilizer Laju pertumbuhan dan ukuran pertumbuhan juga mempengaruhi jumlah hara yang dibutuhkan SISTEM AKAR TANAMAN
101
EFISIENSI PUPUK GULMA:
Respons gulma terhadap pupuk sangat serupa dnegan respon tanaman N fertilization may increase weed growth > crop growth Application method can also affect weed growth Ex – broadcast fertilizer can tend to help weeds get good start
102
EFISIENSI PUPUK INTERAKSI PUPUK - AIR
Ketersediaan hara tanah ditentukan oleh kandungan lengas tanah Drip fertigation may be most efficient use of water & fertilizer Common in greenhouses Can be effective in field use 3. Sistem pertanian menggunakan irigasi tetes INTERAKSI PUPUK - AIR
103
MEMUPUK SECARA EFISIEN
EFISIENSI PUPUK Arahan Pemupukan yang Optimal: Avoid large additions of N or K (50#/ac +) on sandy soils – use split application Avoid broadcast applications of urea & ammonia on warm/moist soils – volatilizes easily – incorporate Avoid N losses on poorly drained soils by using ammonium Band P Menggunakan pupuk “starter” MEMUPUK SECARA EFISIEN
104
Arahan Pemupukan yang Optimal:
EFISIENSI PUPUK Keep N & K fertilizers out of seedling zone to avoid burn Reduce leaching by avoiding application before rain or irrigation Foliar apply, if feasible/appropriate Know nutrient demands of crop Memperbaiki pengelolaan Hukum Minimum Uji tanah Arahan Pemupukan yang Optimal:
105
PUPUK KANDANG Manfaat pupuk kandang: Daur ulang hara
Potential to reduce pollution Adds C to soil Improve aggregation, infiltration, microbial vigor Risikonya: Meningkatkan gangguan gulma High cost of obtaining/applying if you don’t own it Not as convenient as commercial fertilizer Pollution anxiety
106
PUPUK KANDANG Produksi dan Recovery Hara
Tingkat Produksi dapat diralam dan diukur Ransum sangat berpengaruh terhadap kandungan hara dalam pupuk kandang
107
Neraca Hara Ppk Kandang
PUPUK KANDANG Generous applications of manure no longer norm Some states require & enforce strict manure management guidelines Restricted application due to soil P levels instead of N Pupuk kandang saja masih belum dapat memenuhi kebutuhan hara tanaman Tanaman mengambil lebih banyak hara dari tanah Neraca Hara Ppk Kandang
108
Penggunaan Pupuk Kandang
Banyak manfaat/keuntungan penggunaan pupuk kandang Produksi pupuk kandang tidak tersebar merata di seluruh lahan pertanian Biaya angkutan pupuk kandang sangat mahal Too abundant in areas, not enough land for application Penggunaan Pupuk Kandang
109
Penggunaan Pupuk Kandang
Keseimbangan tiga faktor: Suplai hara tanaman Pembuangan limbah Perlindungan lingkungan Lebih fokus pada penggunaan pupuk kandang Penggunaan Pupuk Kandang
Presentasi serupa
© 2025 SlidePlayer.info Inc.
All rights reserved.