Upload presentasi
Presentasi sedang didownload. Silahkan tunggu
1
Akhid Yulianto, SE, MSc (Log)
Waiting Line Theory 2 Akhid Yulianto, SE, MSc (Log)
2
Poisson Probability x = Tingkat kedatangan
λ = rata rata kedatangan per periode e =
3
Eksponential Probability
µ =jumlah unit yang di layani per periode e =
4
M/M/1 Ls = average number of units in the system (waiting and being served) Ws = average time a unit spends in the system Lq = average number of units waiting in the queue Wq = Average time a unit spends waiting in the queue Utilization factor for the system Probability of 0 units in the system Probability of more than k units in the system, where n is the number of units in the system
5
Example Tom Jones, mekanik di toko Golden Muffler, dapat memasang muffler baru dengan rata rata 3/jam (mengikuti eksponential distribution). Customer yang meminta service ini dengan rata rata kedatangan 2/ jam (poisson distribution). Pelayanan FCFS dan populasi yang tak terbatas.
6
Analisa Waiting Line 1st
λ = 2 µ = 3 Ls = rata rata 2 mobil di sistem/jam Ws = 1 jam rata rata menunggu di sistem Lq = 1.33 mobil menunggu di garis , rata rata Wq = 40 menit waktu menunggu per mobil. ρ = 66.6% mekanik sibuk P0 = 0.33 kemungkinan tidak ada mobil di sistem
7
M/M/k Queuing System Multiple channels (with one central waiting line)
Poisson arrival-rate distribution Exponential service-time distribution Unlimited maximum queue length Infinite calling population Examples: Four-teller transaction counter in bank Two-clerk returns counter in retail store
8
M/M/S Ls = average number of units in the system (waiting and being served) Ws = average time a unit spends in the system Lq = average number of units waiting in the queue Wq = Average time a unit spends waiting in the queue Probability of 0 units in the system
9
Example Toko Golden Muffler memutuskan untuk membuka garasi kedua dan menyewa mekanik kedua untuk menangani instalasi muffler. Tingkat kedatangan dan tingkat layanan sama. Analisa?
10
Analisa waiting line 2th
Ls = 0.75 mobil di dalam sistem Ws = 22.5 menit sebuah mobil di sistem Lq = mobil di antrian Wq = 2.5 menit sebuah mobil di antrian
11
M/D/1 Constant service time model
Contoh: assembly line/pencucian mobil otomatis
12
Costs Berdasar jumlah unit customer TC = Cw L + Cs k TC = Total cost
Cw = cost of waiting L = jumlah rata rata units di sistem Cs = Service cost k or s = channel number L = Lq + λ
13
Prinsip biaya Bandingkan biaya yang terendah
Bisa terjadi pada perencanaan untuk penambahan channel Atau penambahan layanan
14
Tambahan Buku lain punya rumus yang berbeda namun hasil perhitungan ± sama Jadi jangan bingung
15
Reference Anderson, & Sweeney, 2002, Quantitative for decision making,9th edn, Sydney Heizer, J.,& Render, B., 2006, Operation Management, 8th edn, Pearson Education, Singapore
Presentasi serupa
© 2024 SlidePlayer.info Inc.
All rights reserved.