Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

PENDEKATAN UTILITAS KARDINAL - Utilitas - Marginal Utilitas

Presentasi serupa


Presentasi berjudul: "PENDEKATAN UTILITAS KARDINAL - Utilitas - Marginal Utilitas"— Transcript presentasi:

1 PENDEKATAN UTILITAS KARDINAL - Utilitas - Marginal Utilitas
TEORI PERMINTAAN PENDAHULUAN PENDEKATAN UTILITAS KARDINAL - Utilitas - Marginal Utilitas - Kondisi Keseimbangan Konsumen konsumsi satu jenis barang menurunkan fungsi permintaan Konsumsi lebih dari satu barang PENDEKATAN UTILITAS ORDINAL - Kurva Indeveren - Marginal Rates Substitutions (MRS) - Budget Line - Keseimbangan Konsumen - Derivasi Teori Permintaan - Substitution effect dan Income Effect FUNGSI PERMINTAAN, FUNGSI REVENUE dan ELASTISITAS PERMINTAAN by L2A164

2 Prinsip teori Utilitas:
1.Barang (goods) yang di konsumsi mempunyai sifat semakin banyak akan semakin besar manfaatnya. Dengan demikian, jika sesuatu yang bila dikonsumsi semakin banyak justru mengurangi kenikmatan hidup (bad) tidak dapat didefinisikan sebagai barang, misalnya penyakit. by L2A164

3 2.Utilitas (utility) adalah manfaat yang diperoleh seseorang karena ia mengkonsumsi barang, Dengan demikian Utilitas merupakan ukuran manfaat (kepuasan) bg seseorang karena mengkonsumsi barang. Keseluruhan manfaat yang diperoleh konsumen karena mengkonsumsi sejumlah barang disebut dengan Utilitas total (Total Utility) Utilitas marjinal (marginal utility) adalah tambahan manfaat yang diperoleh karena menambah satu unit konsumsi barang tertentu. by L2A164

4 3.Pada teori Utilitas berlaku Hukum Pertambahan Manfaat yang Makin Menurun (The law of Diminishing marginal utility) yaitu bahwa awalnya sesorang konsumen mengkonsumsi satu unit barang tertentu akan memperoleh atambahan Utilitas (manfaat) yang besar, akan tetapi tambahan unit konsumsi barang tersebut akan memberikan tambahan Utilitas (manfaat yang semakin menurun, dan bahkan dapat memberikan manfaat negatif. Dengan kata lain, Utilitas marjinal (MU) mula-mula adalah besar, dan semakin menurun dengan meningkatnya unit barang yang dikonsumsi. by L2A164

5 4.Pada teori Utilitas berlaku konsistensi preferensi, yaitu bahwa konsumen dapat secara tuntas (complete) menentukan rangking dan ordering pilihan (preference, choice) diantara berbagai paket barang yang tersedia. Konsep ini disebut dengan Transitivity dan rasionalitas. Misalnya, jika A lebih disuka dari B atau A>B, dan B lebih disukai dari C atau B>C, maka harus berlaku A lebih disuka dari C, atau A>C. by L2A164

6 5.Pada teori Utilitas diasumsikan bahwa konsumen mempunyai pengetahuan yang sempurna berkaitan dengan keputusan konsumsinya. Mereka dianggap (diasumsikan) mengetahui persis kualitas barang, kapasitas produksi, teknologi yang digunakan dsb. by L2A164

7 PENDAHULUAN Teori Permintaan pada dasarnya membahas Teori Perilaku Konsumen dalam mengkonsumsi barang. D x = f (Px, I, Py))  Hukum Permintaan . Salah satu aspek dari Hukum atau Teori Permintaan adalah “hubungan antara Dx dan Px bersifat negatif.” P↓  X ↑ P↑  X ↓ Hubungan semacam ini akan kita buktikan dengan beberapa pendekatan. P X by L2A164

8 PENDEKATAN UTILITAS KARDINAL
by L2A95164 PENDEKATAN UTILITAS KARDINAL Utilitas (TU) - Utilitas (utility = Dayaguna atau kepuasan yang diperoleh konsumen dari penggunaan barang / jasa (misalnya X). Asumsi : utilitas dapat diukur secara kardinal atau bahkan dapat dinilai dengan uang X ↑  TU ↑, dengan ∆TU ↓ sehingga TU max Kalau konsumen terus menambah konsumsi X,  TU ↓ Marginal Utilitas (MU) ∆X  ∆TU Pertanyaan : Berapakah ∆TU jika ∆X hanya satu unit saja ? ∆TU dikarenakan ∆X satu unit inilah yang disebut sebagai “Marginal Utilitas” by L2A164 by L2A95164

9 Gambaran pengukuran TU dan MU dapat dicontohkan sebagai berikut :
by L2A95164 Gambaran pengukuran TU dan MU dapat dicontohkan sebagai berikut : X = 2  TU = 10 X = 5  TU = 25 ΔX = 3 unit ΔTU = 15 util ΔX = 3 unit  ΔTU = 15 ΔX = 1 unit  ΔTU = 15 / 3 = 5  TU= 16X – X2 MU=16 – 2X by L2A164 by L2A95164

10 MU = 0  16 –2X = 0  X = 8 (permintaan brg. X)
by L2A95164 X TU MU =ΔTU / ΔX MU = dTU/dX 2 4 6 8 10 28 48 60 64 16 12 - 4 14 10 6 2 - 2 TU = f(X) TU = 16X – X2 MU = f(X) MU = dTU/dX = 16 – 2X Yang dimaksud permintaan adalah sejumlah brg yg akan dibeli kosumen sehingga kepuasannya maksimum  Maximize kepuasan (TU) sebagai tujuan. - Agar tujuan tsb tercapai harus memenuhi syarat / kondisi keseimbangan : MU = 0  16 –2X = 0  X = 8 (permintaan brg. X) by L2A95164

11 a) Tentukan ekspresi dari marginal utility
by L2A95164 Contoh Kepuasan seorang konsumen atas suatu produk yang dikonsumsi adalah TU = Q2 – 2Q3 a) Tentukan ekspresi dari marginal utility b) Gambarkan fungsi TU dan MU c) Berapakah besarnya TU dan MU jika Q = 5 unit ? d) Berapa Q harus dikonsumsi sehingga TU max e) Berapa konsumsi Q pada MU mulai menurun. by L2A164 by L2A95164

12 Jawaban by L2A164

13 harus memaksimumkan selisih (S) antara TU dan Z (S = TU – Z), yaitu :
by L2A95164 MENURUNKAN FUNGSI / KURVA PERMINTAAN (Dx = f(Px) - Realitanya seorang konsumen dalam membeli barang (X) akan berhadapan dengan harganya (Px)  Analisis hubungan antara harga dan permintaan barang. Untuk memperoleh sejumlah barang diperlukan pengeluaran atau biaya (Z), yang dapat dihitung : Z = Px . X  ( Z = f(X) ) Dengan demikian, sekarang tujuan konsumen tidak semata-mata memaksisimumkan TU saja, tetapi harus memperhitungkan biayanya, yang berarti konsumen harus memaksimumkan selisih (S) antara TU dan Z (S = TU – Z), yaitu : by L2A164 by L2A95164

14 Maximize : S = TU - Z = f (X) - Px . X Agar S maksimum , maka :
by L2A95164 Maximize : S = TU - Z = f (X) - Px . X Agar S maksimum , maka : Jika Px = 6, maka : X = 8 – 0,5Px X = 8 - 0,5(6) = 5 TU = 16(5) – 52 = 55 Z = 6(X) = 30 S = TU – Z = 25 Dari contoh di atas, maka hukum permintaan terbukti : MUx = Px  16 – 2X = Px X = 8 – 0,5 Px  Px ↓ X↑ Px ↑ X↓ by L2A164 by L2A95164

15 KONDISI KESEIMBANGAN KONSUMEN DENGAN KONSUMSI LEBIH DARI SATU BARANG
by L2A95164 KONDISI KESEIMBANGAN KONSUMEN DENGAN KONSUMSI LEBIH DARI SATU BARANG - Untuk kondisi yang lebih nyata lagi, perilaku konsumen menghadapi berbagai pilihan barang dan terbatasnya dana yang dimiliki, disamping menghadapi harganya TU = f (X1, X2, Xn) C = Px1X1 + Px2X PxnXn L = f (X1, X2, Xn) + ג (C – Px1X1 – Px2X – PxnXn ) (Kondisi keseimbangan konsumen) by L2A164 by L2A95164

16 Contoh : Seorang konsumen diperkirakan mempunyai fungsi utilitas atas barang X dan Y seperti : TU = 10X + 24 Y – 0,5X2 – 0,5Y2. Harga X (Px) = $2 dan harga Y (Py) = $6. Sedangkan dana yang dimilki sebesr $44. Pertanyaan : Berapa banyak barang X dan Y harus dibeli konsumen agar kepuasannya maksimum ? by L2A164

17 Maksimumkan : TU = 10X + 24 Y – 0,5X2 – 0,5Y2 Kendala : 44 = 2X + 6Y
Penyelesaian : Maksimumkan : TU = 10X + 24 Y – 0,5X2 – 0,5Y2 Kendala : 44 = 2X + 6Y 44 = 2X + 6Y 44 = 2X + 6(3X - 6) 44 = 20X – 36 X = 4 Y = 3(4) – 6 = 6 by L2A164

18 TU = 10(4) + 24(6) – 0,5(42) – 0,5(62) = 158 ג = (10 – 4)/2 = (24 – 6)/6 = 3 Jadi pembelian barang X = 4 unit dan Y = 6 unit, dan total kepuasannya sebanyak 158 utils. ג = 3 mengartikan pengaruh perubahan per $ terhadap fungsi TU (kepuasan), sebesar + 3 kali. Jadi kalau dana ditambah $10, maka TU akan bertambah sebesar +30 utils (3x10). Coba buktikan ! by L2A164

19 (c) TU = 18X – X2 dan harga barang = Rp 8,- .
Latihan : Tentukan kombinasi konsumsi barang X dan Y, sehingga kepuasan maksimum, jika : (a) TU = 12 X Y Px = $3, Py = $6 dan Dana = $60 (b) TU = 17X + 20Y – 2X2 – Y2 (c) TU = 18X – X2 dan harga barang = Rp 8,- . Maka hitunglah : permintaan barang. by L2A164


Download ppt "PENDEKATAN UTILITAS KARDINAL - Utilitas - Marginal Utilitas"

Presentasi serupa


Iklan oleh Google