Upload presentasi
Presentasi sedang didownload. Silahkan tunggu
Diterbitkan olehLuthfi Ardi Telah diubah "9 tahun yang lalu
2
Ditemukan oleh Piere Simon Maequis de Laplace tahun (1747-1827) seorang ahli astronomi dan matematika Prancis Menurut; fungsi waktu atau f(t) dapat ditranspormasi menjadi fungsi komplek atau F(s) –Dimana s bilangan komplek dari s = + j2 f atau + j = frekuensi neper = neper/detik = frekuensi radian = radian/detik
3
Hasil TL dari f(t) di beri nama F(s) Tanda TL diberikan dengan £ atau L, dan fungsinya di tulis f(t): nilai komplek dari fungsi sebuah fariabel t F(s): Nilai komplek dari fungsi sebuah fariabel s
4
Inverse Transformasi Laplace Inverse (Bilateral) Transform Notation F(s) = L{f(t)}variable t tersirat untuk L f(t) = L -1 {F(s)}variable s tersirat untuk L -1
5
Contoh: Transpormasi Laplace 1. f(t) = A –Jawab
6
Contoh 2. f(t) = At Jawab Dibantu dengan formula integral partsiel yaitu
8
Contoh 3 f(t) = e -at jawab
9
Contoh 4 : f(t) = t.e -at
11
5.f(t) = Sin( t) 6.f(t) = Cos ( t) 7.f(t) = Sin( t+ ) 8.f(t) = e -at. Sin( t)
12
Contoh 9; f(0+) artinya harga nol untuk fungsi, jika didekati dari arah positif
13
Contoh 10;
15
f(t) L (f)f(t) L (f) 1 1 1/s 7 cos t 2 t 1/s 2 8 sin t 3 t2t2 2!/s 3 9 cosh at 4 t n (n=0, 1,…) 10 sinh at 5 t a (a positive) 11 e at cos t 6 e at 12 e at sin t
16
Some useful Laplace transforms f(t)F(s)=L[f(t)]
17
Some useful Laplace transforms f(t)F(s)=L[f(t)]
18
L F(s)f(t)f(t) Laplace Transform Properties Linear atau Nonlinear? Linear operator
19
contoh Seperti gambar disamping, muatan awal kapasitor = 0. Tentukan persamaan arusnya;
20
Transpormasi Laplace
22
Pembalikan transpormasi laplace Lihat tabel
23
Contoh 2 Gambar RL seperti gambar disamping, jika saklar s di on-kan maka tentukan persamaan arunya
24
Persamaan rangkaian Transpormasi Laplace
25
Transpormasi dari cos t
26
Laplace transform Definition of function f(t) Examples f(t)=0 for t<0 defined for t>=0 possibly with discontinuities f(t) <Mexp( t)[exponential order] s: real or complex t f(t) Definition of Laplace transform
27
Laplace transform Examples f(t) Dirac t t f(t)
28
Laplace transform Examples f(t)Heaviside t f(t) t
29
Laplace transform Examples f(t) Ramp t
30
Laplace transform properties Linearity
31
Laplace transform properties Translation a) if F(s)=L[f(t)] Example
32
Laplace transform properties Translation b) if g(t) = f(t-a) for t>a = 0 for t<a a t f(t) g(t) Example
33
Laplace transform properties Change of time scale Example
34
Derivatives Laplace transform properties
35
Derivatives Laplace transform properties If discontinuity in a
36
Derivatives examples Laplace transform properties
37
Remarques sur la dérivation Deux cas à prévoir En intégrant par parties a) b) Si f(t) et toutes ses dérivées sont nulles pour t<0, alors on peut ne pas tenir compte des valeurs initiales pour étudier le comportement
38
Laplace transform properties Integral
39
Laplace transform properties Multiplication by t Leibnitz’s rule More general
40
Laplace transform properties Division by t
41
Periodic function Laplace transform properties
42
Hint
43
Laplace transform properties Sine and cosine are periodic functions
44
Laplace transform properties Example t 1 0 1 2 3 f(t)
45
Laplace transform properties Periodic function
46
Laplace transform properties Example 1 t 0123
47
Laplace transform properties
48
Limit behaviour Initial value Laplace transform properties Exponential order
49
Limit behaviour Final value Laplace transform properties
50
Laplace transform applications C R e0. (t) v(t) RC circuit Equation describing the circuit Laplace transform
51
Laplace transform applications Impulse function Impulse response
52
Laplace transform applications Step function e0
53
Laplace transform applications Step function and initial conditions v(0) 0
54
Laplace transform applications Ramp function
55
(Heaviside) Laplace transform properties a t
56
at
57
Limits Initial value Final value
58
e(t) E(s) v(t) V(s) R C Harmonic analysis Laplace transform properties
59
Forced Transient
Presentasi serupa
© 2024 SlidePlayer.info Inc.
All rights reserved.