Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

Pertemuan 22 FUZZIFIKASI DAN DEFUZZIFIKASI

Presentasi serupa


Presentasi berjudul: "Pertemuan 22 FUZZIFIKASI DAN DEFUZZIFIKASI"— Transcript presentasi:

1 Pertemuan 22 FUZZIFIKASI DAN DEFUZZIFIKASI
Matakuliah : H0434/Jaringan Syaraf Tiruan Tahun : 2005 Versi : 1 Pertemuan 22 FUZZIFIKASI DAN DEFUZZIFIKASI

2 Menjelaskan FUZZY to CRISP conversion dan sebaliknya.
Learning Outcomes Pada akhir pertemuan ini, diharapkan mahasiswa akan mampu : Menjelaskan FUZZY to CRISP conversion dan sebaliknya.

3 Outline Materi Proses Fuzzifikasi. Proses Defuzzifikasi.

4 FUZZIFIKASI & DEFUZZIFIKASI
Fuzzification Scales and maps input variables to fuzzy sets Inference Mechanism Approximate reasoning Deduces the control action Defuzzification Convert fuzzy output values to control signals

5 FUZZY CONTROLLER

6 FUZZY CONTROLLER Fuzzy Controller Defuzzification action Module Fuzzy
Controlled Process Fuzzy Inference Engine Fuzzy Rule base Fuzzification Module condition

7 FUZZIFICATION Transformation from crisp input to fuzzy input.

8 APPROXIMATE REASONING
y = f(x) Then we can make inferences easily premise y = f(x) fact x = x’ consequence y = f( x’ )

9 BASIC INFERENCES x is A Mary is very young A  B very young  young
x is B Mary is young x is A pressure is not very high x is B pressure is not very low x is A B pressure is not very high and not very low

10 MAMDANI’S IMPLICATION OPERATOR
if x is A then y is B x is A’ y is B’

11 INFERENCE Penarikan kesimpulan dari semua fungsi keanggotaan
yang sudah didefinisikan menggunakan RULE BASE. IF A AND B THEN C RULE 1 : A1 , B1  C1 RULE 2 : A2 , B2  C2 FAKTA : x , Dx KESIMPULAN : C’

12 MIN-MAX METHOD

13 DEFUZZIFICATION Transformation from fuzzy output to crisp ouput.
Defuzzification is a process to get a non-fuzzy value that best represents the possibility distribution of an inferred fuzzy control action. There is no systematic procedure for choosing a good defuzzification strategy. Selection of defuzzification procedure depends on the properties of the application.

14 CENTROID OF THE AREA

15 EXAMPLE

16 MEAN OF MAXIMUM

17 EXAMPLE

18 HEIGHT METHOD

19 WEIGHTED AVERAGE

20 EXAMPLE

21 BISECTOR OF THE AREA

22 FIRST/LAST MAXIMA

23 EXAMPLE


Download ppt "Pertemuan 22 FUZZIFIKASI DAN DEFUZZIFIKASI"

Presentasi serupa


Iklan oleh Google